Markers of healthy life styles adherence by using smartphones as monitoring device.

Mireya Fernández & Juan Ramos

21-02-2014
OUTLINE:

1.- Introduction
2.- Goals
3.- System Architecture
4.- What have we done
5.- Where we are now
6.- Who have made this possible - Resources
7.- Next steps
Introduction

Increasing life Expectancy

promotion of healthy lifestyles

aging with wellbeing guaranty
Introduction

Healthy life styles

- Exercise
- Socialization
- Nutrition
- Stress
- Drowsiness
- Circadian rhythms
Introduction

Variables:
- Physical activity
- Peripheral temperature
- Light exposition
- Heart Rate
- Social networks
- Respiration
- localization
- Position
- Psychology

Variables:
- Nutrition
- Exercise
- Stress
- Drowsiness
- Circadian rhythms
- Social networks
- Localization
- Respiration
- Light exposition
- Heart Rate
- Social networks
Introduction

- Physical activity
- Peripheral temperature
- Light exposition
- Heart Rate
- Respiration
- Social networks
- Localization
- Position
- Psychology
- Variables

- Socialization
- Drowsiness
- Circadian rhythms
- Stress
- Nutrition
- Exercise
- Physical activity
- Peripheral temperature
- Social networks
- Localization
- Position
- Psychology
- Variables

- Introduction
Introduction
Goals

1. Development of sensor platforms for measuring biological and behavioral signals for the assessment of the condition of the individual

 Sensor platform = physical sensor + psychological questionnaires analysis

2. Development of a modular acquisition system, portable (wearable) ...and inconspicuous.

3. Development of signal processing algorithms to evaluate healthy life styles adherence
Goals

1.- Development of sensor platforms for measuring biological and behavioral signals to the assessment of the condition of the individual

Sensor platform = physical sensor + psychological questionnaires analysis
1.- Development of sensor platforms for measuring biological and behavioral signals to the assessment of the condition of the individual

Sensor platform = physical sensor + psychological questionnaires analysis
Goals

1. Development of sensor platforms for measuring biological and behavioral signals to the assessment of the condition of the individual

 Sensor platform = physical sensor + psychological questionnaires analysis

2. Development of a modular acquisition system, portable (wearable) ...and inconspicuous.

3. Development of signal processing algorithms to evaluate healthy life styles adherence
Goals

1.- Development of sensor platforms for measuring biological and behavioral signals to the assessment of the condition of the individual

Sensor platform = physical sensor + psychological questionnaires analysis

2.- Development of a modular acquisition system, portable (wearable) ...and inconspicuous.

3.- Development of signal processing algorithms to evaluate healthy life styles adherence
Goals

1. Development of sensor platforms for measuring biological and behavioral signals to the assessment of the condition of the individual

 Sensor platform = physical sensor + psychological questionnaires analysis

2. Development of a modular acquisition system, portable (wearable) ... and inconspicuous.

3. Development of signal processing algorithms to evaluate healthy life styles adherence
System Architecture

Camera
Gyroscope
Acelerometer
Atmospheric pressure sensor
...

3G, 4G, ...

Low Power

Camera
Gyroscope
Acelerometer
Atmospheric pressure sensor
...

Low Power

Camera
Gyroscope
Acelerometer
Atmospheric pressure sensor
...
System Architecture

PROGRAMA DE DOCTORAT EN ENGINEERIA ELECTRÒNICA

Jornades formatives 2014: Projectes de recerca al Departament d’Enginyeria Electrònica
What have we done
Measuring Heart Rate Variability with accelerometer

Accelerometer signal: Z channel

RR interval calculation
What have we done

Heart Rate Variability as stress predictor.
How good is our signal?

Comparison: RR ECG / iPhone

FCB - Bàsquet Base - Resultados - Jugador D.M.

PROGRAMA DE DOCTORAT EN ENGINYERIA ELECTRÒNICA

Jornades formatives 2014: Projectes de recerca al Departament d’Enginyeria Electrònica
What have we done

Measuring Heart Rate and respiration by video signal analysis

Very small changes in image <1LSB
What have we done

Drowsiness Detection

P9: Wireless for fleet tests

P9 – Drowsiness detection through the analysis of driver’s biological data. System addressed to driver’s fleets, is composed by 2 modules:

• Portable biomedical sensor that sends variations of the thoracic effort through Bluetooth.
• Smartphone: Application in the Smartphone that allows to analyze and store data and that it is used as interface with the user
• Possible system functionality

• User identification
• Characterization signal strategy
• Data sending remotely to a control center for testing purposes.
• Send an automatic SMS to a preprogrammed telephone number
What have we done

Drowsiness Detection

Drowsiness detection algorithms estimates fatigue based on the morphology of the respiratory signal

- **State 0 (Apt to Drive)**: Respiration signal characterized by stability in amplitude and frequency
- **State 1 (At-Risk to Drive)**: Respiration signal characterized by appearance of yawns and sights
- **State 2 (Not-Apt to Drive / Somnolence)**: Respiration signal characterized by appearance of "chaotic" patterns
What have we done

Drowsiness Detection

PROGRAMA DE DOCTORAT EN ENGINYERIA ELECTRÒNICA
Jornades formatives 2014: Projectes de recerca al Departament d’Enginyeria Electrònica
What have we done

Bioimpedance Contactless Respiration Sensor.

Programa de Doctorat en Enginyeria Electrònica

Jornades formatives 2014: Projectes de recerca al Departament d’Enginyeria Electrònica
What have we done
Weekly Physical Activity Log (RSAF in Spanish)
What have we done

PROGRAMA DE DOCTORAT EN ENGINYERIA ELECTRÒNICA

Jornades formatives 2014: Projectes de recerca al Departament d'Enginyeria Electrònica
Where we are now

RSAF, Automatic activity identification

Walking

Car driving

Climbing stairs

Acceleration spectrogram, file: AcelerometerData-13-05-10-03-33-22.dat

Acceleration module

Height (Atmosferic Pressure)

Programa de Doctorat en Enginyeria Electrònica

Jornades formatives 2014: Projectes de recerca al Departament d'Enginyeria Electrònica
Where we are now

RSAF, Automatic activity identification

PROGRAMA DE DOCTORAT EN ENGINYERIA ELECTRÒNICA

Jornades formatives 2014: Projectes de recerca al Departament d’Enginyeria Electrònica
Where are we now

www.healthsportlab.com

PROGRAMA DE DOCTORAT EN ENGINYERIA ELECTRÒNICA

Jornades formatives 2014: Projectes de recerca al Departament d’Enginyeria Electrònica
Who have made this possible
Resources
Next steps

Go on with Drowsiness detection

Go on with RSAF

Go on with FITLAB

Start with nutrition

Adding circadian rhythms

Built a set of modular systems

Recercaixa project
What’s the future?

Changes in current model of health care
- Personalized medicine
- Promoting Prevention
 - CHF, High BP, Diabetes, Asthma … (most common chronic diseases)
- Patient at home

http://www.qualcommtricorderxprize.org/