

INTELLIGENT ENERGY MANAGEMENT SYSTEMS APPLIED TO INDUSTRIAL PLANTS

Intelligent energy management systems

Outline

» Energy service companies (ESCO)

- » Intelligent energy management systems
- » Elements of a industrial plant
- » Modeling
- » Supervision, diagnosis and forecasting.
- » Optimization

Energy service companies (ESCO)

- > energy solutions providers, including:
 - + designs and implementation of energy savings projects
 - + Retrofitting
 - + energy conservation
 - + energy infrastructure outsourcing
 - + power generation and energy supply and risk management
 - + efficiency technologies in lighting, HVAC applied to building energy management, industrial energy management, or end users.

HISTORY

- > Beginning: energy crisis of the late 1970s introduce the concept of <u>Time Energy</u> in Texas.
- > The industry grew slowly through the 1970s and 1980s,
- > The 1990s: deregulation in the U.S. energy markets
 - + efficiency technologies in <u>lighting</u>, <u>HVAC</u>.
 - + many energy services companies (ESCOs) expand the generation market, building district power plants or cogeneration facilities within efficiency projects.
 - + (<u>BGA</u>, <u>Inc</u> 1996) District Energy Plant business, completing construction on the first 3rd-party owned and operated district cooling plant in Florida.
- > 2000s:
 - + Enron collapse in 2001 provokes a deregulation efforts
 - + ESCOs in the U.S. grew by 22% in 2006, reaching \$3.6 billion, the largest independent energy services company is <u>Ameresco</u>.
- > ESCO market will achieve \$66 billion in 2017 !

Preliminary study by energy service companies

- > Energy savings tracking methods
 - + installing energy conservation measures (ECMs)
 - + Measurement and Verification (M&V) process
 - Use of spreadsheets for calculate the energy savings
 - + International Performance Measurement and Verification Protocol (IPMVP) is the standard M&V guideline for determining actual savings created by an energy management program.
 - + IPMVP has become standard in almost all energy efficiency projects where payments to the contractors is based on the energy savings that will result from the implementation of a variety of ECMs.

Preliminary study by energy service companies

> IPMVP Options Table: Determining Energy Savings

	Description	Typical Applications	
A Partially Measured Retrofit Isolation	Savings are determined by partial field measurements of the energy use of the system(s) to which an ECM was applied. Some, but not all, parameters may be stipulated.	Lightin g retrofit where pre - and post-retrofit fixture Wattages are measured. Operating hours of the lights are typically agreed upon.	
B Retrofit Isolation	Savings are determined by field measurement of the energy use of the systems to which the ECM was applied.	Variable speed drive on a pump. Electricity use is measured by a kWh meter installed on the electrical supply to the pump motor.	
C Whole Facility (Utility Bills)	Savings are determined by measuring energy use at the utility meter level. Bills may be corrected for weather.	Several ECMs affecting many systems in a building. Utility Bills are used.	
D Calibrated Simulation	Savings are determined using building simulation. This option is rarely used, and is used primarily when there is no pre-retrofit utility data available.	Multifaceted energy management program affecting many systems in a building but where no base-year data are available.	

ECM: energy conservation measures

Outline

- » Energy service companies (ESCO)
- » Intelligent energy management systems
- » Elements of a industrial plant
- » Modeling
- » Supervision, diagnosis and forecasting
- » Optimization

General overview of intelligent energy management system

> This solution is proposed instead of the simple rules applied by the ESCO in order to guarantee the reduction of the energy consumption

iEMS structure

- > Forecasting unit
 - + generation of mathematical models for consumers and generators of the plant
 - The models consider different external parameters (i.e., weather data, working days, production process, etc.)

iEMS structure

- > Diagnosis unit
 - + monitors in real time the signal, detecting and diagnosing possible deviations or anomalies in the behavior of the loads or generators.

iEMS structure

- > Optimization unit
 - + it works in real time on the consumption's operation
 - + to eliminate any unnecessary expenses and to smooth the consumption profile.
 - + It is able to send "warnings", orders of on/off states and orders for the adjustment of the equipment's operation.

Outline

- » Energy service companies (ESCO)
- » Intelligent energy management systems
- » Elements of a industrial plant
- » Modeling
- » Supervision, diagnosis and forecasting
- » Optimization

> Generation of energy

- + The renewable energy technologies
 - Geothermal energy
 - Wind power
 - Solar power and solar thermal
- + CHP plant with renewable energy sources (RES)
- + Small-scale hydro power
- + Cogeneration
- > Energy generated
 - + Cooling energy (technical, comfort)
 - + Heating energy (technical, comfort)
 - + Electric energy (lighting, comfort, process)

- > consumption element
 - + Press, motors, lighting, air handling units, chiller, heating's, robots....
- > Storage element

- > Control and management systems
 - + SCADA common in industrial applications

- + Probabilities of improvement in the controls sistems (PID, on off), based on the Measurement and Verification (M&V) process
 - Isolation of heat pipes
 - Variable frequency drives (VFDs)
 - Control,...

> Cogeneration: scheme of a gas turbine.

Outline

- » Energy service companies (ESCO)
- » Intelligent energy management systems
- » Elements of a industrial plant
- » Modeling
- » Supervision, diagnosis and forecasting
- » Optimization

> Concept

- + Creation of a mathematical description of the phenomena.
- + Based on parameters or historic behavior.
- + Use computational intelligent tools or physics simulators.

> Used for

- + utilities in generation, transmission and distribution of electricity;
- + in energy markets for price forecasting;
- + in buildings for HVAC control and optimization.

- > Expected Results
 - + forecasting of the energy demanded or generated.
 - Sample time.
 - Window of the energy prediction.
 - » Short term (24 hours ahead)
 - » Middle term (1-2 week ahead)
 - » long term (1-4 months ahead)

- > Expected Results
 - + On industrial users
 - Sample time less than 15 min for control action in an optimal time.
 - Short term for control action in an optimal time.
 - Middle term for diagnosis and failures detections.

- > Expected Results
 - + On buildings
 - Sample time less than 1 hour for control action in an optimal time.
 - Short term for control action in an optimal time.
 - Middle term for diagnosis and failures detections.

- > Expected Results
 - + On end users
 - Sample time of 1 hour.
 - Long term for reports of efficiency.

- > Expected Results
 - + On smart grids
 - Sample time of 1 hour.
 - Short term for control action in an optimal time.
 - Middle term for diagnosis and failures detections.
 - Long term for reports of efficiency.

- > Parametric modeling
 - + Machinery modeling based on internal phenomena.
 - + Energy conversion units takes some form of energy and transforms it to another, Ex:
 - a generator converting the rotation of its shaft into electrical energy
 - air conditioning equipment converting cold water into cool air.
 - + energy conversion unit takes:
 - a set of inputs
 - internal state variables
 - produces outputs

> Parametric modeling

- + Is composed by sub-models
 - The most simple form is a set of constant conversion coefficients from the inputs to the outputs.
 - The internal operations excludes factors as dependence of the coefficients on the plant's operational state (e.g. summer/winter, day/night) and its dynamics (e.g. start-up of a large absorption chiller can take up to 20 minutes).
- + Is used to create **on-line models**, which are created using a simulator software and direct measurement of parameters.
- + The on-line models feeding other software's when is impossible capture historic data of the machinery.

> Parametric simulator Software's .

> Parametric simulator Software's .

Steam turbine
Gas turbine
Boilers
Electrical chillers
Absorption coolers
Photovoltaic panels
Pumps
Valves
Heat exchangers
Control and logics modules

	Vendor	Simulator	Primary source of data
1	GSE SYSTEMS	JADE	Vendor website [26]
2	Flowmaster	Flowmaster V7	Vendor website [27]
3	CTI Simulation International	CASSIM	Vendor website [28]
4	Sim Infosystems	ProSimulator and ProGensim	Vendor website [29]
5	SimGenics	<unspecified name=""></unspecified>	Vendor website [30]
6	Mathworks	Matlab/Simulink	Vendor website [31]
7	Aspentech	Aspen Plus Dynamics	Software manuals, expert opinion [32], Somers et al. [33]
8	VTT and Fortum	APROS	Software manuals, expert opinion, software website [34]
9	Corys	ALICES	Vendor website [34]
10	TRAX	ProTRAX	Vendor website [36]
11	Endat	Prosim	Vendor website [37]
12	Modelica Association	Modelica	Association website [38]
13	Honeywell	Unisim	Vendor website [39], software evaluation version
14	Andritz	IDEAS	Expert opinion [40]
15	Empresarios Agrupados	EcoSimPro	Software website [41] , software evaluation version

> Data Driven Models.

It analyze the collected data of the system and discover the relationships between them without to know the physic behavior of the system.

+ Hard-computing

requires a precisely stated analytical model and often a lot of computation time i.e.: ARIMA models, linear regression, polinomic interpolation.

- + Soft-computing
 - it is tolerant of imprecision, uncertainty, partial truth, and approximation.
 - probabilistic models (Markov networks, Bayesian models)
 - Bio inspired models:
 - » Neural networks
 - » fuzzy logic
 - » Neuro fuzzy models
 - » genetic algorithms.

- > Energy study.
 - + Study of the processes and their related energies
 - + Definition and selection of the energy drivers of the system: multivariable analysis of possible variables that affect the behavior of the energy consumptions.

- > Energy study.
 - + Outlier detection and gap padding.
 - 3 sigma threshold for outliers

KNN for gap padding (non-parametric)

>	Energy study.	Step 0:	Scada Database
	 Definition and selection of the inputs. 		
	 PCA (Principal Component Analysis) 	Step 1:	Outlier detection and gap padding
	» Visualization of the information contained in a data matrix	Step 2:	Creation of most comonly used
	» Reduction of the dimensionality (feature selection)		energy driver
	» Extraction of new derived variables (latent), "feature extraction"	Step 3:	Data pre-procesing (scaling, filters, etc)
	 Smoothing of data (error reduction, avoiding collineality) 	Step 4:	Multivariable analysis
	» First phase of the explanatory variables for modeling		Identification of the Energy drivers

drivers

ANFIS architecture: two inputs, four if-then rules and one output.

Layer 1: fuzzification – membership function evalution

Layer 2: fuzzy rule evaluation

$$\begin{split} \omega_j &= \mu_{A_i}(x) \cdot \mu_{B_k}(y), \qquad j = 1, 2, 3, 4. \quad i = 1, 2. \\ k &= 1, 2. \end{split}$$

Layer 3: rule strength calculation

$$\overline{\omega}_j = \frac{\omega_j}{\sum_{i=1}^N \omega_i}, \quad N = 4$$

ANFIS architecture: two inputs, four if-then rules and one output.

Layer 4: output polinomial evaluation and weighting

$$z_j \cdot \overline{\omega}_j = \overline{\omega}_j \cdot \left(p_j x + q_j y + r_j \right)$$

Layer 5: final output calculation

 $z = \sum_j z_j \cdot \overline{\omega}_j$

ANFIS architecture: two inputs, four if-then rules and one output.

Rules

$if x \in A_1 \land y \in B_1 \Longrightarrow z_1 = p_1 x + q_1 y + r_1$
$if \ x \ \in \ A_1 \ \land \ y \ \in \ B_2 \ \Longrightarrow \ z_2 = p_2 x + q_2 y + r_2$
$if \ x \ \in \ A_2 \ \land \ y \ \in \ B_1 \ \Longrightarrow z_3 = p_3 x + q_3 y + r_3$
$if x \in A_2 \land y \in B_2 \implies z_4 = p_4 x + q_4 y + r_4$

Linguistic interpretation

if production (x) is $low(A_1)$ & time (y) is morning (B_1) $\Rightarrow consumption_1 = p_1x + q_1y + r_1$ if production (x) is $low(A_1)$ & time (y) is night (B₂) $\Rightarrow consumption_2 = p_2x + q_2y + r_2$ if production (x) is high (A₂) & time (y) is morning (B₁) $\Rightarrow consumption_3 = p_3x + q_3y + r_3$ if production (x) is high (A₂) & time (y) is night (B₂) $\Rightarrow consumption_3 = p_3x + q_3y + r_3$

 \Rightarrow consumption₄ = $p_4x + q_4y + r_4$

- Training algorithms
- □ Antecedent parameters:
 - Back propagation(BP)
 - Evolutive algorithms (PSO, GA)
- Consequent parameters:
 - Square least(LS)

Outline

- » Energy service companies (ESCO)
- » Intelligent energy management systems
- » Elements of a industrial plant
- » modeling
- » Supervision, diagnosis and forecasting
- » Optimization

Supervision, diagnostic y forecasting

- » Forecasting process.
 - > Steps.

Supervision, diagnostic y prediction

G-ANFIS model

NN model

	Training RMSE	Checking RMSE
ANFIS	0,0604	0,0622
NN	0,0646	0,0734
G-ANFIS	0,0612	0,0620

Table 1. Comparison of RMSE obtained from different models and training algorithms.

Supervision, diagnostic y prediction

Supervision, diagnostic y prediction

- > Diagnostic:
 - + Anomalies detection based in a comparison between the predicted behavior and the real behavior.

Outline

- » Energy service companies (ESCO)
- » Intelligent energy management systems
- » Elements of a industrial plant
- » Load and modeling
- » Supervision, diagnosis and forecasting
- » Optimization

Optimization

- > Concept:
 - + refers to problems stated as maximization or minimization of a linear function subject to constraints that are linear equalities and inequalities.

> Objectives in energy applications:

- + optimize the energy flow in the plant
- + minimizing the operation cost, CO2 emissions, energy peaks demand

> Actions:

- + mathematically formulation of the producer-consumer system based on the energy hub concept, analysing the different energy carriers inside the plant.
- + Run a optimization algorithm searching for the best local configuration (connections) between energy producers and load consumers
- + This algorithms that a fitness functions that penalize the costs and emissions.

Energy Hub Concept

"... An ENERGY HUB is considered as a unit where multiple energy carriers can be converted, conditioned and stored. It represents an interface between different energy infrastructures and/or loads. It consumes power at their input ports and provide certain required energy services at the output ports..." [M. Geidl, 2007]

Energy Hub Concept

This general modeling concept enables the description of power transmission in the same way as conversion.

• Converter Clusters (Coupling Matrix) of the System:

 $\alpha, \beta, \dots, \omega \in \mathcal{E} = \{electricity, natural gas, heat, \dots\}$

• Coefficients:

 $L_{\beta} = C_{\alpha\beta} * P_{a}$ $C_{\alpha\beta} = f(x_{1,} x_{2,...,} x_{n})$

Type of coupling	Coupling factor	Energy carriers
Lossless transmission	$c_{\alpha\beta} = 1$	$\alpha = \beta$
Lossy transmission	$0 < c_{\alpha\beta} \leq 1$	$\alpha = \beta$
Lossless conversion	$c_{\alpha\beta} = 1$	<i>α</i> ≠ β
Lossy conversion	$0 < c_{\alpha\beta} \le 1$	<i>α</i> ≠ β
No coupling	$c_{\alpha\beta} = 0$	any α,β

Energy Hub Concept

The benefits of an Energy Hub are:

- The reliability of the energy supply
- Flexibility of satisfying the energy demand
- Optimization of the energy use in the system
- Advantages of the different energy forms

Electricity Storage

Heat Accumulators

[G. Koeppel, "Reliability Considerations of Future Energy Systems: Multi-Carrier Systems and the Effect of Energy Storage." PhD thesis, Power Systems Laboratory, ETH Zurich, 2007]

Energy Hub Concept - Formulation

Elements of a industrial plant

Energy Hub Concept - Formulation

Optimization over the power comsuption

GA

Multiobjetive GA

EUROENERGEST PROJECT

» Problems to be solved.

- Increase of competitiveness of car manufacturers by means of energy efficiency management improvement systems
- To reduce energy costs and Climate change
- To be an example in energy efficiency so as to industrial sector and International policy

» Objectives

- Optimize the energy performance of the automotive industry
- Model patterns of energy consumption & Environment impact
- Intelligent Energy Management System (iEMS) for energy optimization
- Test in a real situation within a large car manufacturer facility

PROJECT IMPACT

» On users.

- Energy and GHG savings (up to 15%), real and verifiable energy and CO2 saving information

» On social impact & policy

- Car Industry employment and facilities within UE, new financial models (ESCO)
- » On industry.
 - Car Industry competitiveness, ESCO model for EE&Renewables, diversification to other industries, Internationalization
- » On research activity & technology
 - "Best Technology Available", Energy optimization algorithms, CO2 evaluation, real case validation

STRUCTURE OF THE GENERATION MODEL AT SEAT.

Elements of a industrial plant

Elements of a industrial plant

Energy Hub definition and structure

Generator Expected Models:

- Co-generation
- Thermal Boilers
- Absorption Machines
- Cooling Machines (Climaveneta)

COG ($\mathcal{E}, Q = f$ (Gas)) BOILERS (Q = f (Gas)) Abs Mach+Climavenet ($Q_{cold} = f$ (\mathcal{E}))

Consumptions:

- Thermal Energy Demand (Cool/Heat)
- Electrical Energy Demand

Mathematical formulation:

 $\begin{array}{ll} P1 = Thermal \, Demand \, T1 & P9 \\ P2 = Cooling \, Demand \, PH1, PH2, PH3, PH4 \\ P3 = P2 * \eta_{Abs1}^{cool} & P1 \\ P4 = P2 + P3 & P1 \\ P5 = f1 * P4 * \eta_{boiler} & P1 \\ P6 = (1 - f1) * P4 * \eta_{cog}^{th} & P1 \\ P7 = Electric \, Demand \, RLTs & P1 \\ P8 = \frac{P6}{\eta_{cog}^{el}} & P1 \end{array}$

 $\begin{array}{l} P9 = Cool \ Demand \ PH5 \\ P10 = Cool \ Demand \ PH6 \\ P11 = Cool \ Demand \ PH7 \\ P12 = P9 * \eta_{chill1}^{cool} \\ P13 = P10 * \eta_{chill2}^{cool} \\ P14 = P11 * \eta_{chill3}^{cool} \end{array}$

Energy Requirements:

Gas Demand = P5 + P6

Electic Demand Grid = P12 + P13 + P14 - P8

Energy Hub definition and structure

Energy Hub definition and structure

System optimization for energy management.

• Test of optimization algorithms – Graphic user interface of scenario's configuration:

🛃 Optimix_GUI																							۲
	Red	Fotovoltaica	 Eólica 	Micro Cogeneración - biogás	Micro Cogeneración – gas natural	Bomba de calor - electricidad	Bomba de calor – gas natural	MACI – gas natural	MACI – gasóleo	MACI – gas propano	Caldera de Comb. De Baja T gn	Caldera de Comb. De Baja T_gs	Caldera de Comb. De Baja T_gpr	Caldera de condensación - gn	Caldera de condensación - gsl	Caldera de condensación - gpr	Solar Térmica	Caldera de Biomasa - biomasa	Enfriadora Convenc - electricidad	Enfriadora Rotor-electricidad	Absorción MASE - calor	Absorción MADE- calor	
Max. Poten.	0	72	180	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
Coste Compra	0	2000	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Años Evaluac.	0	10	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Coste Instal.	0	1000	500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Años Evaluac.	0	20	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Coste Manten.	0	50	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Coef. Electr.	1	1	1	1.62	3.26	0	0	4.57	0.0043	11.06	0	0	0	0	0	0	0	0	0	0	0	0	
Coef. Calor	0	0	0	3.1875	5.73	3.4	0	4.72	0.0044	11.41	9.86	0.009	23.86	11.07	0.01	26.29	0.64	4.2	0	0	0	0	
Coef. Frio	0	0	0	0	0	3.8	0	0	0	0	0	0	0	0	0	0	0	0	3.8	4	0.63	1	
Precios	Red [kWh]	Fotov	[kWh] Eó	lica[k	Wh]	Biog	ás [m3] Ga	sóleo	[m3]	Gas	Prop.[r	n3] (Gas Na	t. [m3]	Sola	ar (kW	h] E	iomas	a [kg]	
Energías	0	.6		0		0			0.15		0.4			0.1		0	.15		0		0	.8	
Exit Reset all Load Save As I Electrical Demand I Thermal Demand Coloulate																							

>Optimization criteria:

$$\begin{split} C_{total} &= C_{grid} + C_{gas} + C_{pv} \\ \min{imize}: \quad C_{total} \\ subject to: \quad P_{total}^{out} = CP_{total}^{in} \\ & \overline{P}_{\min}^{in} \leq \overline{P}^{in} \leq \overline{P}_{\max}^{in} \end{split}$$

Initial (at the top) LPs, GA (at the middle) and MOGA (at the bottom) LP results.

Summary results for the Implemented GA and MOGA

Description	GA	MOGA	Unit	Observation
ASR number		2	unit	A and B
Motors for control		4	unit	x and y axis
Total searched delays		8	unit	4 by ASR
Allowed maximum delay		5	S	
Maximum obtenaided delay	4.9	0.1	S	
Initial total time	29.4	29.4	S	
End total time	34	29.5	S	With MOGA the total delay is less
Initial maximum total load peak	56	56	Α	
End maximum total load peak	44	44,49	Α	
Load peak reduction	21%	21%	%	
Average CPU time	5	90	S	Intel® Core™2 Quad CPU Q6600 @ 2.400 GHz