Hybrid Modulators for conducted EMI suppression in modular-parallel topology

David Gonzalez, TIEG Research Group
Presentation Index

1. Introduction
2. Switching Frequency Modulation in Parallel Arrangement
3. Variable Delay Frequency Modulation
4. Coupled Interleaved Multicellular Parallel Converter
5. Experimental Results
6. Conclusions
1.- Introduction

The present trend in Power Electronics to improve performance is SYSTEM INTEGRATION

- Power density [kW/dm³]
- Power per unit weight [kW/kg]
- Relative cost [€/kW]
- Relative losses [%]
- Failure rate [h⁻¹]
1.- Introduction

EMI FILTER
1.- Introduction

- Switching Frequency Modulation (SFM) is a worthy way to suppress EMI in power converters.
- SFM applied to parallel arrangement should be combined with interleaving. This will result in Variable Delay Frequency Modulation (VDFM).
- This technique is suitable for new devices (SiC).

- Parallel arrangement is a disruptive topology that breaks frequency barrier. Moreover, Coupled Interleaved Multicellular Parallel Converters (CIMPC) show several advantages in terms of system integration and dynamic response.
- CIMPC require a SYMMETRIC operation.
2.- SFM in Parallel Arrangement

Breaks frequency barrier
Increased control dynamics
Redundancy without impairing reliability
2.- SFM in Parallel Arrangement

Periodic modulation function of period T_m
2.- SFM in Parallel Arrangement

<table>
<thead>
<tr>
<th>Modulations</th>
<th>$\varepsilon_{k,i}$</th>
<th>$T_{k,i}$</th>
<th>$\tau_{k,i}$</th>
<th>α_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDFM-Tm</td>
<td>0 $\forall i,k$</td>
<td>$T_c + \Delta T_k \forall i$</td>
<td>$D_c \cdot T_k \forall i$</td>
<td>$\frac{T_m}{N}(i-1)$</td>
</tr>
<tr>
<td>CDFM-Tc</td>
<td>0 $\forall i,k$</td>
<td>$T_c + \Delta T_k \forall i$</td>
<td>$D_c \cdot T_k \forall i$</td>
<td>$\frac{T_c}{N}(i-1)$</td>
</tr>
<tr>
<td>VDFM</td>
<td>$\frac{T_{k,i}}{N}(i-1)$</td>
<td>$T_c + \Delta T_k \forall i$</td>
<td>$D_c \cdot T_k \forall i$</td>
<td>0 $\forall i$</td>
</tr>
</tbody>
</table>

Periodic modulation function of period T_m
3.- Variable Delay Frequency Modulation

VDFM combines interleaving and SFM

\[S_{CDFM-Tm}(w) = F \left\{ \sum_{i=1}^{N} q_i(t) \right\} = NAD_c \hat{\alpha}(w) + \sum_{n=1}^{\infty} \left[\frac{A}{j \pi n} \right] \left\{ \frac{1-e^{-j2\pi n}}{1-e^{-N}} \right\} \sum_{k=1}^{L} \left[e^{-j2\pi H_k} \left(1 - e^{-j2\pi \tau_k} \right) \right] \hat{\alpha}(w-nw_m) = \right. \]

\[= NAD_c \hat{\alpha}(w) + N \cdot E_{CDFM-Tm}(w) \sum_{n=1}^{\infty} \left[\frac{A}{j \pi n} \sum_{k=1}^{L} \left[e^{-j2\pi H_k} \left(1 - e^{-j2\pi \tau_k} \right) \right] \hat{\alpha}(w-nw_m) \right. \]

\[S_{CDFM-Tc}(w) = F \left\{ \sum_{i=1}^{N} q_i(t) \right\} = NAD_c \hat{\alpha}(w) + \sum_{n=1}^{\infty} \left[\frac{A}{j \pi n} \right] \left\{ \frac{1-e^{-j2\pi n}}{1-e^{-NL}} \right\} \sum_{k=1}^{L} \left[e^{-j2\pi H_k} \left(1 - e^{-j2\pi \tau_k} \right) \right] \hat{\alpha}(w-nw_m) = \right. \]

\[= NAD_c \hat{\alpha}(w) + N \cdot E_{CDFM-Tc}(w) \sum_{n=1}^{\infty} \left[\frac{A}{j \pi n} \sum_{k=1}^{L} \left[e^{-j2\pi H_k} \left(1 - e^{-j2\pi \tau_k} \right) \right] \hat{\alpha}(w-nw_m) \right. \]

\[S_{VDFM}(w) = F \left\{ \sum_{i=1}^{N} q_i(t) \right\} = NAD_c \hat{\alpha}(w) + \sum_{n=1}^{\infty} \left[\frac{A}{j \pi n} \right] \left\{ \frac{1-e^{-j2\pi T_k}}{1-e^{-NT_k}} \right\} e^{-j2\pi H_k} \left(1 - e^{-j2\pi \tau_k} \right) \hat{\alpha}(w-nw_m) = \right. \]

\[\alpha_i=0 \ ; \ \tau_k \text{ control} \ ; \ T_k \text{ modulated} \ ; \ \varepsilon_k=(i-1)T_k/N \]
3.- Variable Delay Frequency Modulation

VDFM combines interleaving and SFM

\[\alpha_i = 0 ; \; \tau_k \text{ control} ; \; T_k \text{ modulated}, \; \varepsilon_k = (i-1)T_k/N \]
3.- Variable Delay Frequency Modulation

Example of VDFM performance:

\[N=4 ; f_C=300kHz ; m=6 \]
3.- Variable Delay Frequency Modulation

Example of VDFM performance:

\[N=4 \; ; \; f_c=300\text{kHz} \; ; \; m=6 \]
4.- Coupled Interleaved Multicellular Parallel Converter

We need a **SYMETRIC** system in order to prevent couplers saturation, that could lead to a catastrophic failure.

SYMETRIC
- Construction
- Gates drive
- Switching
4.- Coupled Interleaved Multicellular Parallel Converter

Duty-cycle

For phase N

$$D_N = D_c \cdot (1 + \Delta D)$$
4.- Coupled Interleaved Multicellular Parallel Converter

\[N=3 \quad ; \quad f_c=300kHz \quad ; \quad m=6 \]
4.- Coupled Interleaved Multicellular Parallel Converter

\[N=4 \; ; fc=300kHz \; ; m=6 \]
4.- Coupled Interleaved Multicellular Parallel Converter

\[N=6 ; f_c=300kHz ; m=6 \]
5.- Experimental Results

![Graph showing experimental results with frequency on the x-axis and amplitude on the y-axis. The graph compares different conditions labeled as ∆D=0%, ∆D=5%, ∆D=15%, and ∆D=25%. The amplitude values are given in dB.]
5.- Experimental Results

\[\text{CIMPC } N=6 ; \text{ DC/DC ; } \text{Vin}=311V ; \text{Vout}=48V ; \text{Po}=250W \]
5.- Experimental Results

$N=6 \ ; \ fc=10kHz \ ; \ m=6$
5.- Experimental Results

\[N=6 \; ; \; fc=10kHz \; ; \; m=6 \]
5.- Experimental Results

$LISN \ [\text{dBuV}]$

<table>
<thead>
<tr>
<th>Frequency $[\text{Hz}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^4</td>
</tr>
<tr>
<td>10^5</td>
</tr>
<tr>
<td>10^6</td>
</tr>
</tbody>
</table>

$N=6 \ ; \ fc=10k\text{Hz} \ ; \ m=6$
5.- Experimental Results

![Graph showing conducted noise in dBuV vs. frequency in Hz for N=6, fc=50kHz, and m=6. Peaks at Nfc, 2Nfc, and 3Nfc are highlighted.]
5.- Experimental Results

![Graphs showing CM voltage (AC) and Output Voltage Ripple over time.](image)
5.- Conclusions

- VDFM could be applied successfully to CIMPC to suppress conducted noise

- New Devices (SiC, GaN) are candidates to use this technique

- Duty-cycle deviations (\(\Delta D\)) produce the following effects:
 - None at Nfc
 - Attenuation degradation is noticed below Nfc
 - Attenuation degradation increases with N

- Precise timing in gate-drive signals is a keypoint for this particular application