Wideband Continuous-Time Multi-Bit Delta-Sigma ADCs

Jose Silva-Martinez

Thanks to All our Graduate Students that generate these ideas and make possible to test the concepts, and report them in the ISSCC-2009, and JSSC: June 2010, September 2010 and March 2011.

Texas A&M University Department of Electrical and Computer Engineering Analog and Mixed-Signal Center March, 2012

Outline

- Introduction
- Design techniques for a 3th order Low-Power 10MHz Low-Pass Σ∆ ADC in 65nm Technology
- Design techniques for a 5th Order 25MHz ΣΔ ADC with SNDR>68 dB
- Conclusions

Introduction: Connectivity

- Increasing number of wireless standards
- Support of multiple-standards on the same chip
- Advances in Integrated RF design towards universal devices
- Software Radio: easy addition of new standards

Introduction: Design considerations

Numerous systems will be included into the next generation receiver.

- Cell phone standards (GSM, WCDMA, DECT, EDGE etc)
- Communication network (802.11 a/b/g, bluetooth, WiMax, UWB etc)
- Satellite services (GPS)
- Different technologies are used to achieve the receiver
 CMOS, BiCMOS, III-IV Compounds (GaAs, InP, etc.)
- Strong push to the digital domain
 - Digital circuit: accurate & robust
- In a complete System-on-Chip: 90% is digital circuitry
 only 10% is analog
- ✤ Variations of receiver architecture are proposed.
 - Direct conversion, software-radio, High-IF receiver

Design Examples

Motivation

- Low power, low cost WLAN ADC for ultra-mobiles
- Conventional ADC architectures are often unsuitable for nanometric technologies (feature size <100nm)
- New architecture for low power ADC compatible with nanometric technology is desired

Internet surfing on mobile device

20MHz BW, >12bit ADC

Existing Solutions for Baseband ADC

- ΔΣ architecture is preferred for nanometric digital technology
 - Does not rely on component matching and complex analog circuits
 - Digital decimation filter scales well with technology
- 1-bit $\Delta\Sigma$ impractical for wideband application
 - Order of modulator is limited by overloading effects
 - Large Over Sampling Ratio (OSR) increases power dissipation
- Typical Multi-bit ΔΣ architecture gives up "Digital friendly" advantages
 - Front-end filter and feedback DAC linearity are major issues

State-of-the-art and Target

Sigma-Delta ADC

- Power efficient and cost effective
- Inherent "anti-aliasing" filtering
- Digital post-processing capability

On-going research •14 bit, 20MHz ADC in 90nm technology with auto-calibration

- Total Power consumption < 50 mW
- Robust performance with on-chip master clock having 5-10 psec jitter
- Figure of merit in the range of 250 fJ/conversion step

Direct Conversion Multi-Standard Receiver

System issues in broadband systems:

High frequency filtering is especially critical in broadband applications Rejection of Blockers: ADC filtering must be complemented by LP filtering Neighbor channels are quite relevant even if heavy filtering is used

Trade-offs: Light filtering in front demands an ADC with higher SNR and higher SDR Higher SNDR-ADC implies more power and more circuit complexity

Design Example Section 1.2 Control Low-pass $\Sigma \Delta ADC^{Control Martinez}$

Blocker Rejection: Feedforward vs. Feedback

Input signal: Weak in-band component (-43dBFS @12MHz) and a strong out-of-band component (-6dBFS @395MHz). Clock frequency = 400MHz. In-band alias signal at 5 MHz.

Feedback architecture clearly has significant advantages:

• Excellent Blocker Rejection : Feedback STF provides Nth order filtering for blockers

• Improved Dynamic Range: Better filtering of out-of-band channels reduces input power in filter stages 10

Jitter Insensitivity of Switched-Capacitor DACs

Non-Return-to-Zero vs. Switched-Capacitor

 Clock jitter causes a variation in the width of the feedback pulse resulting in a random variation in the amount of charge fed back per clock cycle

Jitter noise is directly proportional to jitter variance and DAC pulse magnitude

• Switched Capacitor (SC) DACs present excellent jitter performance but demands large slew-rate and faster OPAMPs

Design Examples

Strategy for nanometric technologies

- Make use of time domain signal representation
- Small supply voltage limits the dynamic range of analog signals
- Fast switching gates provide fine time precision, which provide alternate means for high DR signal representation
- Also takes advantage of CV²f

Time domain signal representation

J. Silva-Martinez

A 20MHz Signal Bandwidth 68dB Dynamic Range Continuous Time ΔΣ ADC Based On Multi-bit Time Domain Quantizer and Feedback Element

V. Dhanasekaran, et.al. ISSCC-2009; JSSC March 2011

Proposed ADC Architecture

Conventional $\Delta\Sigma$

Time domain Quantizer-DAC

- Multi-level quantizer and Digital to Analog Converter (DAC) is replaced by PWM generator and Time to Digtal Converter (TDC)
- Width of p(t) is proportional to the amplitude of the signal in a given clock period
- Output code (Dout) represents "quantized pulse" edges with a quantization step size = T_Q

J. Silva-Martinez

Why $\Delta \Sigma$ **Noise Shaping**

- **PWM + TDC** cannot achieve necessary performance
 - Timing edges are precise to sub-pS level but resolution is limited
 - Typical TDC resolution is about 1 inverter delay (~15pS in 65nm technology)
 - Difficult to achieve good linearity of PWM at this speed
- Noise shaping is used to overcome limited time resolution of TDC
 - Time quantization results in quasi-white noise that can be shaped by the loop filter
 - Precise timing edges (standard deviation < 800fS), required for the feedback path, is achieved by using matched delay elements
- Loop filter serves to suppress the quantization noise introduced by the TDC and the non-linearity of the PWM

Merits of the Proposed Approach

- Flash ADC and Multi-level
 DAC is replaced by PWM
 Generator & TDC
- The TDC is implemented by digital circuits, which takes advantage of technology scaling
- Feedback signal is inherently linear and is ultimately limited by timing precision
- Reduced sensitivity to clock
 jitter

	Multi-bit	Proposed
Low OSR design	\odot	
Small supply voltage	$\overline{\mathbf{i}}$	
DAC linearity	$\overline{\mathbf{i}}$	
Sensitivity to clock jitter	$\overline{\mathbf{i}}$	

Full System Simulation

- System level design and simulation of the proposed architecture was performed using SIMULINK
- Transistor level simulations were performed using TISPICE, SPECTRE and FINESIM simulators

Design Examples

PWM Generator

- PWM signal generated by standard method comparing signal with triangle waveform
- Double-sampled or "asymmetric sampled" PWM is used to minimize distortion and improve OSR
- Performance is relaxed due to noise shaping

TDC Functionality

- TDC
 - Converts pulse timing information to digital codes (Drout & Dfout)
 - Drout & Dfout can be used to reconstruct signal in clocked digital domain
 - Also generates a feedback pulse aligned to the timing edges represented by the dotted lines

Design Examples

TDC & Time quantized feedback pulse

- Digital output code
 - CT PWM output p(t) is latched by delayed versions of the clock
 - Flipflop outputs provide "thermometer" coded pulse width
 - D input of the flipflops are driven by p(t) to facilitate easy generation of f/b pulse
- Feedback pulse pq(t)
 - Must match output code
 - Edges of pq(t) are always aligned to the delayed clock edges

Time quantized pulse generator

- Pq(t) can be generated using a OR gates and SR latch
- Pq(t) turns 'High' when the earliest of CK0-3 goes High after p(t) is High
- Pq(t) turns 'Low' when the earliest of CK4-7 goes High after p(t) is Low

• Wired-NOR/NAND gate can be used to ensure uniform delay

Design Examples

Full TDC Schematics

- 50 levels of time steps are used in the proposed design for 20MHz ADC
- Clock phases are generated using cascade of delay elements that are tuned using a phase detector

J. Silva-Martinez

Active-RC Topology Loop Filter

- The gain of the filter in the signal bandwidth (20MHz) serves to suppress the quantization noise of the TDC
- The filter has a minimum inband gain of 37dB

Mitigating Excess loop delay

Characterstics	Amplifier 1-2	Amplifier 3
DC Gain	High (>30dB)	Moderate-low (20dB)
Gain-Bandwidth	Moderate (150-250MHz)	High (>500MHz)
Supply Noise Rejection	High (>40dB)	Moderate

KFB provides a 'fast path' through INT3 => Make AMP3 a minimum phase structure

Schematic: Amplifier1 / Amplifier2

VSS

Two Stage 'Typical' configuration

- maximizes gain of the initial stages => Better Q control
- Output pole ~ 4*GBW
- Overall noise limited by input devices
- Rf reduces (degenerate) noise due to NMOS current mirrors

Limitations:

- Parasitic poles result in additional loop delay/excess phase in the filter (could be > 10 deg at 500MHz)
- Limits loop stability and affects the overall performance

Schematic: Amplifier 3

Single Ended Schematic of Amp3

Limitations:

- Bias point not accurately controlled + % variation across statistical corner & Temp
- Need for 'Non-conventional'2common-mode control

- A simple single stage pseudo-differential 'inverter based' amplifier
- Complementary structure
 with class A-B action
- CM noise (supply etc) is suppressed by biquad gain of 18dB

Amplifier 3 Common Mode control

- Current sources at virtual ground control amplifier's common mode
- Icm are: small current source, sized to meet transconductance and noise specifications
 27

Chip Micrograph

- Folded layout to minimize delay in feedback
- Digital approach minimizes area requirement
- Occupies 0.15mm²

Test Setup

- LC Bandpass filter used to generate a clean input (remove noise and distortion from source)
- SAW Osc. used to generate low jitter clock

 16950B LVDS input Logic analyzer used to capture data @500MHz

29

Design Examples

Input Conditioning Filter

Source Performance

- Noise floor = -125dBm/Hz
- THD = -45dB
- **Required Performance**
- Noise < -143dBm/Hz
- THD < -70dB

3rd order Chebyshev BPF centered at 4MHz

Performance after filtering

Noise beyond 150KHz offset < -150dBm/Hz

30

Distortion < -75dB

30

Design Examples

J. Silva-Martinez

Single-ended to Differential Converter

- Differential opamp with CM control
- Input resistance set to 50Ω (Rt=Rt' ||R1)
- R1+Rt' = R2 to eliminate offset
- 1st order RC pole at ~30MHz

- Noise < -146dBm/Hz
- THD < -85dB

³¹ **31**

Clock Generation

- Agilent clock generator (E88440) RMS jitter = 20pS
- Need clock jitter < 3pS-rms
- CVS575 SAW Osc. provides low jitter (0.2pS-rms) LVPECL clock
- On-PCB BJT diff.pair converts LVPECL to CMOS levels

Diff pair bias adjusted to provide peak current swing of 50mA **Design Examples**

J. Silva-Martinez

Test Setup Pictures

Pattern Generator & LC-BPF

Design Examples

PCB Pictures

DC Regulators on bottomside of the PCB

Output Spectrum: -5dB Input

Output Spectrum : -30dB Input

- Output spectrum for -30dB 4MHz Input signal
- SNR=38.6dB
- THD=50.0dB
- Slight increase in noise floor due to loop delay variation with amplitude

J. Silva-Martinez

Dynamic Range

- DR = 68DB
- Peak SNDR=60dB
 @ -5dB input
- Peak THD=67dB @ -6dB input

SNR, SNDR vs Amplitude

Dynamic Range (DR) is defined as the amplitude range with SNR>0dB

Comparison of 20MHz BW $\Delta\Sigma$ ADCs

	Breems ISSCC 07	Straayer * VLSI 07	Malla ISSCC 08	Proposed ADC
SNDR (dB)	69	55	70	60
Power (mW)	56	38	27.9	10.5
Energy/Conv. (fJ/Step)	595	2058*	270	319
Area (mm ²)	0.5	0.19	1.0	0.15
Output Rate (MSPS)	680	950	420	250

* Uses VCO based time domain approach

Conclusions

- Demonstrated the suitability of time-to-digital converter based ADC in silicon
- Sub pico second time edge matching is experimentally proven
- Not just "works around" scaled technology limitations but leverages their strength
- Proposed a ADC solution for nanometric technologies

J. Silva-Martinez

25MHz Bandwidth (BW) Continuous-Time (CT) Lowpass (LP) ΣΔ Modulator with Time-Domain 3-bit Quantizer and DAC

Cho-Ying Lu, et.al., Sept 2010, JSSC

5th-order 3-bit

feedforward

architecture

Local feedback is

to compensate the

excess loop delay

LC-VCO+CILFD are

used to generate

clean reference

clocks

System Architecture

Biquadratic section and OPAMP

Very linear OPAMP for >100MHz applications

Wide-band Adder with delay compensation

The load resistor is split into 2 pieces and one section replaced by an RC T-network

Rfeedback = Ra||(Rb+Rc) at low frequencies Rfeedback = Ra at low frequencies

$$\theta(\omega) = \tan^{-1}(\frac{\omega}{\omega_z}) - \tan^{-1}(\frac{\omega}{\omega_p})$$

$$\tau_{delay} = -\frac{d\theta(\omega)}{d\omega} = -\frac{(\omega_z - \omega_p)(\omega^2 - \omega_z \omega_p)}{(\omega^2 + \omega_z^2)(\omega^2 + \omega_p^2)}$$

Pulse Amplitude Modulation

Traditional Multi-level Digital Signal

Unit element current mismatch generates DAC non-linearity.

Time-Domain Pulse Width Modulation

Only inherently linear 1-level DAC achieve multibit feedback

Systematic (Nonlinearity) errors

Error Charge from Device Mismatch

Current errors accumulate **1-level PWM DAC**

Timing errors at the pulse edges

INL, DNL and Linearity

PWM Linearity could be >10dB better!

Time-Domain Pulse Width Modulation

- Pulse Arrangement
 - To ease the design of interface circuitry between quantizer and level-to-PWM converter

$$SJNR_{peak} = 10 \log_{10} \left(\frac{T_s^2 \cdot OSR}{2 \cdot \sigma_y^2 \cdot \sigma_\beta^2} \right)$$

Jitter Comparison

Sensitivity to Jitter Noise: 400 MHz clock frequency

More transitions in one sampling period

Worst case for the PWM case: Jitter at both edges is uncorrelated 50 More sensitive to jitter => Require low-jitter Clock (< 0.5ps)

LC-VCO + CILFD

51

- Phase noise of VCO is -119dBc/Hz @ 1MHz
- CILFD phase noise is -136dBc/Hz @ 1MHz

Jitter between phases is highly correlated

Proposed 3-bit Two-Step Quantizer

- The output is composed by 1 MSB + 3LSB
- The MSB is determined first

Proposed Level-to-PWM Converter

- SR latches generate the pulses
- AND gates + OR gates decide the required pulses
- Programmable Delay is used to minimize excess loop delay

Design Examples

Chip Microphotograph & Clock Jitter

Core area = 2.6mm²

RMS jitter= 0.27ps => SJNR > 75dB

Measurement Result – SNDR & SFDR

Output Spectrum of the Modulator

- Peak SNR= 68.5dB @25MHz BW
- Peak SNDR = 67.7dB @25MHz BW
- SFDR=78dB

Signal to Distortion Ratio

Two tones with 2MHz apart and -2dBFS overall power

Overall Performance

Technology	Jazz 0.18µm CMOS		
Power Supply	1.8V		
Clock Frequency	400MHz		
Bandwidth	25MHz		
Peak SNR / SNDR* @ 25MHz Bandwidth	68.5dB / 67.7dB		
SFDR	78dB		
IM3 (-5dBFS per tone)	< -72dB		
Dynamic Range	69dB		
Power Consumption	48mW		
Area without pads &ESD protection	2.6mm ²		

Aliasing Test: -10dBFS tone at 390MHz

 Two tones with 2MHz apart at 10 MHz offset from Clock frequency and -10dBFS overall power

Comparison with Reported Works

A 25MHz Bandwidth 5th-Order Continuous-Time Lowpass Sigma-Delta Modulator With 67.7dB SNDR Using Time-Domain Quantization and Feedback, C.Y. Lu, et.al., *Sept 2010, IEEE J. Solid-State Circuits*.

Reference	Technology	F _s	BW	Filter Order	Peak SNDR	Power	FoM (fJ/bit)
JSSC 2008	130nm CMOS	950MHz	10MHz	2	72dB	40mW*	500
ISSCC-2008	180nm CMOS	640MHz	10MHz	5	82dB	100mW^{\dagger}	487
ISSCC-2009	65nm CMOS	250MHz	20MHz	3	60dB	10.5mW^{\dagger}	319
ISSCC-2007	90nm CMOS	340MHz	20MHz	4	69dB	56mW#	608
ISSCC-2008	90nm CMOS	420MHz	20MHz	4	70dB	28mW ⁺	271 [∆]
JSSC 2006	130nm CMOS	640MHz	20MHz	3	74dB	20mW ⁺	122
This work	180nm CMOS	400MHz	25MHz	5	67.7dB	44mW⁺	444 [†]

* Includes clock generation circuitry.

- ⁺ For modulator circuitry only.
- **# Includes digital calibration of RC spread & noise cancellation filter.**
- ^A Discrete-time modulator (would require anti-aliasing filter for comparable blocker rejection).

Conclusions

- A 5th-order LP CT ΣΔ modulator with time-domain 3-bit quantizer and DAC was designed
- The jitter effect and device mismatch issue are analyzed and considered in the design
- By employing the proposed time-domain PWM digital signal, the timing mismatch issue is minimized
- Better jitter tolerance if jitter is correlated in all clock phases
- Measured 67.7dB peak SNDR @ 25MHz BW and < -72dB IM3.
- Over 55dB blocker rejection