

Variation-Tolerant Design of Analog CMOS Circuits – Lecture 3

Marvin Onabajo

Assistant Professor Dept. of Electrical & Computer Eng. Northeastern University, Boston, USA monabajo@ece.neu.edu http://www.ece.neu.edu/~monabajo

Short Course held at:

Universitat Politècnica de Catalunya Barcelona, Spain

Outline – Lecture 3

- On-chip DC and RF power measurements with differential temperature sensors
- Case study: differential temperature sensor design
- Temperature sensors as variation monitors
- Mismatch reduction for transistors in high-frequency differential analog signal paths
- Example: mixer design with analog tuning for transistors biased in weak inversion

Built-In Receiver Testing and Calibration – Revisited

- Power detectors
 - Main benefit: improved block-level observability
 - Main drawback: loading effects due to connections to signal paths

On-Chip Thermal Monitoring

- Motivation for temperature sensing in built-in test (BIT)
 - Thermal coupling: power dissipation \rightarrow temperature change (near the device)
 - Affects operating parameters
 - •Temperature gradients can be used to monitor system performance
 - Measurement without direct contact to the circuit \rightarrow avoids impact on performance

- Objectives
 - Realization of on-chip temperature sensors for built-in testing applications
 - RF signal power and linearity characterization with temperature sensors

Principle of the Temperature-Sensing Technique

Differential Temperature Measurements

$$\Delta Out = S_{diff} \left(\Delta T_1 - \Delta T_2 \right) + S_{cm} \left(T + \frac{\Delta T_1 + \Delta T_2}{2} \right)$$

- Desired on-chip sensor characteristics:
 - High sensitivity (S_{diff}) to differential temperature
 - Low sensitivity (S_{cm}) to common-mode (absolute) temperature

J. Altet, A. Rubio, E. Schaub, S. Dilhaire, and W. Claeys, "Thermal coupling in integrated circuits: application to thermal testing," *IEEE J. Solid-State Circuits*, vol. 36, no. 1, pp. 81-91, Jan. 2001.

Modeling of Thermal Coupling

- Equivalence of thermal & electrical domains
 - ■Temperature ↔ Voltage
 - Power \leftrightarrow Current
 - Thermal coupling: based on a discrete RC model from layout dimensions

Key Properties of Thermal Coupling

$$T(r,t) = \frac{C}{r} \cdot e^{-r\sqrt{\omega/(2 \cdot D)}} \cdot e^{j(\omega t - r\sqrt{\omega/(2 \cdot D)})}$$

where : C is a constant

D is the thermal diffusion constant ω is the frequency of the heat (power) source r is the radius from the heat source

Two Possible Situations

Thermal Coupling on the Device Level

• Example: MOS device model with thermal effects

• $Z_{th(j\omega)}$ = thermal impedance

- $Z'_{th(j\omega)}$ = linearized $Z_{th(j\omega)}$ @ operating point
- From the effect of Z_{th(jω)}, the typical sensitivity to temperature is:

$$\frac{\Delta V_{T}}{\Delta T} \approx \frac{-1.8 \text{mV}}{\text{K}}$$
, $\frac{(\Delta \beta / \beta)}{\Delta T} \approx \frac{-0.5\%}{\text{K}}$

Modeling the Silicon Die

Unit Elements in the 3-D Model:

- $C = \rho \cdot c \cdot x_u y_u z_u$
- $R_x = x_u / (\kappa \cdot y_u z_u)$

$$R_{y} = y_{u} / (\kappa \cdot x_{u} z_{u})$$

$$R_z = z_u / (\kappa \cdot x_u y_u)$$

where:

- ρ = mass density
- c = specific heat capacity
- κ = conductivity for silicon

Discrete Thermal Coupling Model

Partial differential equation to model heat diffusion

$$\rho c \frac{\partial u(x,y,z,t)}{\partial t} = \kappa \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) u(x,y,z,t) + p_d(x,y,z,t)$$

• where: • where: • u is the temperature of the material t is time x, y, z are the coordinates with respect to the heat source for silicon: ρ (mass density) = 2.3 x 10⁶ g/m³ κ (thermal conductivity) = 120 W/(m x K) at 75°C p_d = rate of heat production (i. e., the dissipated power) c (specific heat capacity) = 0.7 J/(g x K)

Discretized heat diffusion modeling

- Electrical equivalent circuit
- Parameters:
 - unit volume $\equiv \Delta x \Delta y \Delta z$ (small incremental directions)

$$C \equiv \Delta x \Delta y \Delta z \rho c$$

- $i \equiv p$ (power dissipated per unit volume)
- $v \equiv u$ (temperature)

S. Mattisson, H. Hagberg, and P. Andreani, "Sensitivity degradation in a tri-band GSM BiCMOS direct-conversion receiver caused by transient substrate heating," *IEEE J. Solid-State Circuits*, vol. 43, no. 2, pp. 486-496, Feb. 2008.

References: Thermal Coupling

D. J. Walkey, T. S. Smy, R. G. Dickson, J. S. Brodsky, D. T. Zweidinger, and R. M. Fox, "Equivalent circuit modeling of static substrate thermal coupling using VCVS representation," *IEEE J. Solid-State Circuits*, vol. 37, no. 9, pp. 1198-1205, Sep. 2002.

N. Nenadovic, S. Mijalkovic, L. K. Nanver, L. K. J. Vandamme, V. d'Alessandro, H. Schellevis, and J. W. Slotboom, "Extraction and modeling of self-heating and mutual thermal coupling impedance of bipolar transistors," *IEEE J. Solid-State Circuits*, vol. 39, no. 10, pp. 1764-1772, Oct. 2004.

J. Altet, A. Rubio, E. Schaub, S. Dilahire, and W. Claeys, "Thermal coupling in integrated circuits: application to thermal testing," *IEEE J. Solid-State Circuits*, vol. 36, no. 1, pp. 81-91, Jan. 2001.

S. Mattisson, H. Hagberg, and P. Andreani, "Sensitivity degradation in a tri-band GSM BiCMOS directconversion receiver caused by transient substrate heating," *IEEE J. Solid-State Circuits*, vol. 43, no. 2, pp. 486-496, Feb. 2008.

L. Codecasa, D. D'Amore, and P. Maffezzoni, "Modeling the thermal response of semiconductor devices through equivalent electrical networks," *IEEE Trans. Circuits and Systems I: Fund. Theory and Appl.*, vol. 49, no. 8, pp. 1187-1197, Aug. 2002.

V. Szekely, "On the representation of infinite-length distributed RC one-ports," *IEEE Trans. Circuits and Systems*, vol. 38, no. 7, pp. 711-719, July 1991.

S.-S. Lee and D. J. Allstot, "Electrothermal simulations of integrated circuits," *IEEE J. Solid-State Circuits*, vol. 28, no. 12, pp. 1283-1293, Dec. 1993.

W. VanPetegem, B. Geeraerts, W. Sansen, and B. Graindourze, "Electrothermal simulation and design of integrated circuits," *IEEE J. Solid-State Circuits*, vol. 29, no. 2, pp. 143-146, Feb. 1994.

RF Signal Characterization

- RF power conversion to low-frequency temperature changes:
 - Mixing of AC voltage & current at the same frequency

```
\rightarrow down-conversion (DC power)
```

 Power components at M₁ that cause low-frequency temperature changes (after low-pass coupling):

•with single tone $v_{in} = Acos(\omega t)$

 \rightarrow at DC: $(V_{DD}I_{DC} - R_LI_{DC}^2) - \frac{1}{2}R_L(g_mA^2)$

•with two tones $v_{in} = Acos(\omega_1 t) + Acos(\omega_2 t)$

- \rightarrow at DC: $(V_{DD}I_{DC} R_LI_{DC}^2) R_L(g_mA)^2$
- \rightarrow at ($\omega_1 \omega_2$): **R_L(g_mA)**²

Fundamental PNP Temperature Dependence

• Equivalent temperature dependence of $I_{C(T)}$ and $V_{BE(T)}$

$$I_{C(T)} = I_{S(T)} \exp(\frac{qV_{BE}}{kT}) = A_E C T^{\eta} \exp(\frac{q(V_{BE} - V_{g0})}{kT})$$

where:

 $I_{S(T)}$ is the saturation current at temperature T q is the electron charge k is Boltzmann's constant V_{g0} is the extrapolated bandgap voltage at 0K C and η are process-dependent constants A_F is the emitter area

 From the above expression, the base-emitter voltage was expressed in [1] at reference temperature T_r as:

$$V_{BE(T_r)} = V_{g0} + \frac{kT_r}{q} \ln(\frac{I_{C(T_r)}}{A_E C T_r^{\eta}})$$

 \rightarrow V_{BE(Tr)} typically has a sensitivity of -2mV/K

[1] M. A. P. Pertijs, G. C. M. Meijer, and J. H. Huijsing, "Precision temperature measurement using CMOS substrate pnp transistors," *IEEE Sensors Journal*, vol. 4, no. 3, pp. 294-300, June 2004.

Conventional Temperature Measurements

- Proportional to <u>absolute</u> temperature (PTAT) measurement concept
 - Two substrate PNP transistors with constant collector-current ratio (I_{C2}/I_{C1})
 - Sensitivity of V_{BE} to absolute temperature (T) change \approx -2mV/K
 - Relative measurement for robustness to process variation:

$$\Delta V_{BE(T)} = V_{BE2(T)} - V_{BE1(T)} = n \times \frac{kT}{q} \ln(\frac{I_{C2}}{I_{C1}})$$

 \bullet n \approx 1 is the diode ideality factor (minor effect from process variation)

•Sensitivity of ΔV_{BE} to absolute temperature: k/q \approx 8.6 x 10⁻⁵ V/K

Temperature Measurement Sensitivity

Example Sensor with High Temperature Sensitivity

E. Aldrete-Vidrio, D. Mateo, and J. Altet, "Differential temperature sensors fully compatible with a 0.35-µm CMOS process," *IEEE Trans. Components and Packaging Technologies*, vol. 30, no. 4, pp. 618-626, Dec. 2007.

Examples: Low-Noise Amplifier Characterization at UPC

D. Mateo, J. Altet, E. Aldrete-Vidrio, and J. L. Gonzalez, "Frequency characterization of a 2.4 GHz CMOS LNA by thermal measurements," in *Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium*, 2006 IEEE, pp. 517-521, June 2006.

J. Altet, E. Aldrete-Vidrio, D. Mateo, A. Salhi, S. Grauby, W. Claeys, S. Dilhaire, X. Perpiñà, and X. Jordà, "Heterodyne lock-in thermal coupling measurements in integrated circuits: applications to test and characterization," *Review of Scientific Instruments*, vol. 80, no. 2, pp. 026101-1 – 026101-3, Feb. 2009.

Measurement setup with off-chip lock-in amplifier

Measurement $\Delta T@(f_1-f_2)$ and LNA gain vs. frequency

On-Chip Heating Example

Thermal map of a power amplifier (PA) with DC bias and 0dBm RF power:

- PA characterization with onchip temperature sensing
 - 65nm CMOS
 - DC temperature sensor output correlation with the power added efficiency (PAE)
 - Demonstrated with PAs operating at 2GHz and 60GHz

Test chip characterization results can be found in:

J.L. González, B. Martineau, D. Mateo, and J. Altet, "Non-invasive monitoring of CMOS power amplifiers operating at RF and mmW frequencies using an on-chip thermal sensor", in *Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp.*, June 2011.

On-Chip Heating Impact on Circuit Performance

Example: GSM Tri-Band BiCMOS Direct Conversion Receiver

- Substrate heating effects
 - Sensitivity degraded by 2-4dB
 - DC offset →
 I-channel: 620 µV, Q-channel: -340 µV

mixer core:

S. Mattisson, H. Hagberg, and P. Andreani, "Sensitivity degradation in a tri-band GSM BiCMOS direct-conversion receiver caused by transient substrate heating," *IEEE J. Solid-State Circuits*, vol. 43, no. 2, pp. 486-496, Feb. 2008.

Outline – Lecture 3

- On-chip DC and RF power measurements with differential temperature sensors
- Case study: differential temperature sensor design
- Temperature sensors as variation monitors
- Mismatch reduction for transistors in high-frequency differential analog signal paths
- Example: mixer design with analog tuning for transistors biased in weak inversion

Differential Temperature Sensor for Built-in Testing

Marvin Onabajo* Josep Altet** Jose Silva-Martinez***

* Northeastern University, Boston, USA
 ** Univ. Politècnica de Catalunya (UPC), Barcelona, Spain
 *** Texas A&M University, College Station, USA

Project-Specific Goals

- Sensor optimization
 - Wide dynamic range
 - Simplicity \rightarrow homodyne approach \rightarrow single test tone \rightarrow DC output
- LNA characterization
 - DC and RF power dissipation measurements through temperature sensing
 - 1-dB compression point estimation

Dynamic Range Extension for DC Measurements

- Temperature measurement sensitivity requirement
 - Worst case due to weak signal: low-noise amplifier (LNA)
 - Typical scenario:
 - DC power of LNA 4-8mW
 - RF power dissipated: 0.5mW 2mW
 - 0.1mW dissipation → ~4m °C temperature increase
 - Project goal: improved dynamic range (prevent saturation)
 - \rightarrow DC and RF power measurement: (V_{DD}I_{DC} R_LI_{DC}²) ¹/₂R_L(g_mA²)

Sensor Circuit

M. Onabajo, J. Altet, E. Aldrete-Vidrio, D. Mateo, and J. Silva-Martinez, "Electro-thermal design procedure to observe RF circuit power and linearity characteristics with a homodyne differential temperature sensor," *IEEE Trans. on Circuits and Systems I: Regular Papers*, vol. 58, no. 3, pp. 458-469, March 2011.

Amplifier in the Temperature Sensor Core

Simulated Amplifier Specifications:

Parameter	Value
DC Gain	30.2dB
f _{3dB}	1.74MHz
Unity Gain Frequency (f _u)	56.9MHz
Phase Margin	89.7°
Integrated Input-Referred Noise (DC - f _u)	55.1µV
Output Resistance	270Ω
5% Settling Time (1mV step input, unloaded)	264ns
CMFB Loop: DC Gain / Phase Margin	35.1dB / 74.4º
Input Offset Voltage (standard deviation)	1.5mV
Technology / V _{DD}	0.18µm CMOS / 1.8V
Power Dissipation (with CMFB)	1.05mW

Common-mode feedback circuit

TIA Input Impedance Effect on Sensor Efficiency

Temperature sensor core with transimpedance amplifier (TIA)

- Current generated by ΔT splits between $\frac{1}{2} \cdot Z_{in \ TIA}$ and r_{π}
 - Desired: $Z_{in_TIA} \approx R_f / (1+A) << r_{\pi}$
 - $r_{\pi} = kT/q * I_B/2 \approx 5k\Omega$ in this design depending on sensitivity setting (I_B)
 - The amplifier gain (A) was determined in consideration of the effect on sensitivity →

Simplified equivalent circuit of the sensor core (S_{dif} = sensitivity to differential temperature)

Temperature Sensor Core Simulations

- Design in 0.18µm CMOS
 - Sensitivity in the sensor core (stage 1)
 - ◆0.998µA/°C 2.73µA/°C
 - ◆tunable with I_{core} (100µA 1mA)

Dynamic range

- max. sensitivity setting: 13.5°C
- min. sensitivity setting: 28.4°C

Offset compensation

- for process mismatch & temperature gradients
- by tuning I_{cal1} or I_{cal2} from 0-500µA
- max. sensitivity setting: ±8.2°C
- min. sensitivity setting: ±10.6°C

Temperature Sensor Core Simulations (cont.)

Sensor Specification Overview

- Sensitivity tuning range
 - ■10mV/mW 200mV/mW

• Dynamic range

min. sensitivity setting: 0.2mW to >16mW
max. sensitivity setting: 10µW to 12mW

Offset compensation

for mismatch & on-chip temperature gradients
by tuning I_{cal1} or I_{cal2} from 0-500µA
max. sensitivity setting: ±8.2°C
min. sensitivity setting: ±10.6°C

• **Power consumption** (1.8V supply): 1.1mW

Testchip (0.18µm CMOS)

Layout area:

- Sensor circuitry: 0.012mm²
- Q₁, Q₂: 11µm x 11µm

On-chip low-noise amplifier (LNA):

- Inductor-less (broadband)
- Designed by Mohan Geddada

Broadband LNA on the Testchip

Broadband LNA (Jazz 0.18µm CMOS) designed by Mohan Geddada (Texas A&M University)

Measured LNA* performance parameters:

Parameter	Value at 1GHz
Gain (S ₂₁)	-2.3dB**
1-dB Compression Point	0.5dBm
Third-Order Intercept Point (IIP3)	12.0dBm
S ₁₁	-6.3dB
S ₂₂	-12.7dB
I _{DC}	8.7mA
Technology / V _{DD}	0.18µm CMOS / 2.4V

* LNA loaded (without buffer) by a 50Ω analyzer impedance.

** Reduced due to the external 50Ω load in addition to the on-chip load resistor (R_L) and due to S₁₁ degradation from packaging/PCB parasitics at 1GHz; S₂₁ ≈ 0dB up to 500MHz.

33

Measurements: Sensor Characterization

Sensor output vs. power of diode-connected MOS transistors $D_{1,2}$. Distance between $D_{1,2}$ and $Q_{1,2}$: 4µm.

Measurements: Sensor Characterization (cont.)

power at R_t and $D_{1,2}$ vs. I_{core}

Measured Dynamic Range

Dynamic Range: sensor output vs. power dissipation at resistor R_t with $I_{core} = 100\mu A$ (sensitivity = 41.7mV/mW) and $I_{core} = 1mA$ (sensitivity = 199.6mV/mW)
Measurements: Sensor Characterization (cont.)

Offset calibration range

with I_{cal1} ($I_{cal2} = 0$, $I_{core} = 500\mu$ A) and 16mW dissipation at resistor R_t (worst-case imbalance due to process variation and additional temperature gradient)

Practical Calibration Considerations

- Suggested testing sequence:
 - 1) Sensor calibration $\rightarrow \Delta V_o = 0V$
 - 2) Turn-on DC bias of circuits & measure sensor outputs: $(V_{DD}I_{DC} R_{L}I_{DC}^2)$
 - 3) Apply RF signal & measure sensor outputs: $(V_{DD}I_{DC} R_LI_{DC}^2) \frac{1}{2}R_L(g_mA^2)$
 - 4) Extract observables
 - $\frac{1}{2}R_L(g_mA^2)$ from subtraction \rightarrow RF power gain
 - $(V_{DD}I_{DC} R_LI_{DC}^2) \rightarrow \text{identify gross failures}$

Measurements: LNA Testing

DC output voltage of the sensor

(set to 167mV/mW sensitivity)

1-dB Compression Point Characterization Details

• The DC temperature change due to the RF signal power depends on non-linearities:

$$P_{DC \to \Delta T} \approx K_{DC} \cdot \left(\frac{\alpha_2}{2} X^2\right) - \frac{1}{2} K_{AC} \cdot \left(\alpha_1 X - \frac{3}{4} | \alpha_3 | X^3\right)$$

where:

- X is the input signal amplitude
- α₁ is the linear transconductance with non-linearity coefficients α₂ and α₃
- K_{DC}, K_{AC} are constants assuming weakly non-linear operation
- The minimum occurs at:

$$\mathbf{X_{min}} = \frac{-\alpha_2 (\mathbf{K}_{\rm DC}/\mathbf{K}_{\rm AC}) + \sqrt{\alpha_2^2 (\mathbf{K}_{\rm DC}/\mathbf{K}_{\rm AC})^2 + \frac{9}{4}\alpha_1 |\alpha_3|}}{\frac{9}{4} |\alpha_3|}$$

• Relationship to the 1-dB compression amplitude (x-axis shift):

shift_{min[1dB]} =
$$10\log(\frac{X_{min}^2}{X_{1dB}^2})$$

Temperature Sensing: Summary

- Proposed temperature sensor topology for built-in testing
 - Can serve as RF power detector without connection to the signal path
 - Wide dynamic range enables the measurement of RF power components at DC and power dissipation from DC bias circuitry
 - Implemented with substrate PNP devices in standard CMOS technology
- Experimental results (testchip fabricated in 0.18µm CMOS technology)
 - Verified feasibility of RF signal power measurements
 - Demonstrated the capability to measure linearity characteristics (1-dB compression point) of an on-chip RF amplifier

M. Onabajo, J. Altet, E. Aldrete-Vidrio, D. Mateo, and J. Silva-Martinez, "Electro-thermal design procedure to observe RF circuit power and linearity characteristics with a homodyne differential temperature sensor," *IEEE Trans. on Circuits and Systems I: Regular Papers*, vol. 58, no. 3, pp. 458-469, March 2011.

Outline – Lecture 3

- On-chip DC and RF power measurements with differential temperature sensors
- Case study: differential temperature sensor design
- Temperature sensors as variation monitors
- Mismatch reduction for transistors in high-frequency differential analog signal paths
- Example: mixer design with analog tuning for transistors biased in weak inversion

Variation Monitoring with Temperature Sensors

Acknowledgement:

Thanks to **Didac Gómez**, **Eduardo Aldrete-Vidrio**, **Josep Altet**, and **Diego Mateo** for providing the following simulation and measurement results.

CUT for Variation-Monitoring Assessments

Specification	Value at 2.45GHz
Voltage Gain (v _o /v _i)	25.9dB
1-dB Compression Point	-15.4dBm
IIP3	-3.2dBm
S ₁₁	-17.6dB
NF	4.5dB
Power	0.42mW
Technology / V _{DD}	65nm CMOS / 1.2V

- Power dissipation is monitored at the cascode transistor M_c
 - Larger drain-source voltage swing than transistor M_M, but the same DC and AC current
 - $\hfill Higher power dissipation at <math display="inline">M_C$ compared to M_M in this CUT

Simulated Correlations betw. Specification and Power

- 1000 Monte Carlo runs
- Gain vs. DC power dissipation at $M_C \rightarrow$
 - Due to the RF test signal only
 - DC bias power excluded (assumes completed calibration)

- 1-dB compression point vs. DC power dissipation at $\rm M_{C}$ \longrightarrow
 - Due to the RF test signal only
 - DC bias power excluded

- Required power detection range: 5-80µW
 - Feasible with a diff. temperature sensor

Simulated Correlations betw. Specification and Power

- Noise Figure vs. DC power dissipation at M_C
 - Due to the RF test signal only
 - DC bias power excluded
- <u>Thermal tendency</u> analysis
 - Defined as the temperature evolution when a parameter is swept (i.e., frequency of the input)
 - Relative min. or max. temperature point is extracted through multiple measurements

 → exact value of the sensor sensitivity does not have to be known
 - \rightarrow more robust to process variations
 - Relaxes the sensor design requirements
 - Example:
- Simulated LNA center frequency vs. frequency with minimum DC power dissipation →

Experimental Evaluation

- LNA with sensor fabricated in 0.25µm CMOS
- Change of DC bias voltage (V_{RF-BIAS}) to induce specification variations due to different bias points: A = 3.3V, B = 2.6V, C = 2.0V

Measured Correlations

- Bias points
 - **A**: I_D = 10.59mA, Gain = 9.79 dB@850 MHz
 - B: I_D = 8.05mA, Gain = 8.56 dB@850 MHz
 - C: I_D = 5.80mA, Gain = 6.58 dB@850 MHz
- The min. sensor output matches with the max. gain in the LNA's frequency response:

Measured Correlations

(test tone frequency = 800MHz)

- Gain = slope of the linear approximation for the measured sensor outputs
- Scattering of data points
 - Due to interferences
 (DC temperature fluctuations)
 - Less severe with higher input power levels
 - Immunity to noises improves with the heterodyne approach

Variation Monitoring: Summary

- Performance variations can be observed with an on-chip temperature sensor
 - ■Homodyne approach → DC output voltage
 - ■Voltage gain prediction accuracy ≈ ±2dB
 - ■Thermal tendency accuracy (e.g., 1dB compression point) ≈ ±1dB
- Thermal sensing is a non-influential variation-monitoring method
 - No connection to the CUT
 - Multiple small substrate PNP devices (sensors) could be multiplexed to a single core to minimize area overhead

M. Onabajo, D. Gómez, E. Aldrete-Vidrio, J. Altet, D. Mateo, and J. Silva-Martinez, "Survey of robustness enhancement techniques for wireless systems-on-a-chip and study of temperature as observable for process variations," *Springer J. Electronic Testing: Theory and Applications*, vol. 27, no. 3, pp. 225-240, June 2011.

Outline – Lecture 3

- On-chip DC and RF power measurements with differential temperature sensors
- Case study: differential temperature sensor design
- Temperature sensors as variation monitors
- Mismatch reduction for transistors in high-frequency differential analog signal paths
- Example: mixer design with analog tuning for transistors biased in weak inversion

Mismatch Reduction for Transistors in High-Frequency Differential Analog Signal Paths

Team at Texas A&M University:

Marvin Onabajo Jose Silva-Martinez

Transistor Mismatch Reduction

- Target applications
 - Differential RF circuits → mismatch reduction to improve IIP2 performance
 - •Examples:
 - Direct down-conversion mixers
 - Differential broadband LNAs
 - Alternative for digitally-assisted approach when:
 - Minimal on-chip digital measurement & calibration resources are available
 - Supplement to digitally-assisted calibration
 - Fast analog coarse calibration at start-up (within microseconds)

M. Onabajo and J. Silva-Martinez, "Mismatch reduction technique for transistors with minimum channel length," *Analog Integrated Circuits and Signal Processing*, vol. 70, no. 3, pp. 429-435, March 2012.

Mismatch Calibration with an Analog Control Loop

- Conventional approaches to reduce variations are opposing design objectives
 - Increased transistor lengths \rightarrow Larger parasitic capacitances
 - \rightarrow worse high-frequency operation
 - Layout matching techniques (e.g. interleaved or common-centroid styles)
 - \rightarrow More high-frequency coupling (cross-talk)
 - Parasitic capacitances of crossing metal lines
 - •Leakage through the substrate due to the proximity of the devices
- Proposed approach
 - Indirect matching of the transistors under calibration through an analog DC control loop
 - Calibration circuitry is not in the RF signal path
 - \rightarrow Large devices are used to measure the mismatch and to control bias voltages

Typical RF Layout Situation

55

Mismatch Calibration Concept

Example: Differential Amplifier

- Mismatch-sensing transistors: M_{1S} , M_{2S} I_{B}
 - Matched to M₁ and M₂ (min. channel lengths)
 - \rightarrow Coupling through layout parasitics results in small signal loss instead of cross-talk
 - Correlation: $I_1 \leftrightarrow I_{1S}$, $I_2 \leftrightarrow I_{2S}$

 $\label{eq:standard} \rightarrow \mbox{ In a matched pair with N fingers, the standard deviation of the threshold voltage difference ($\sigma_{\Delta Vth}$) decreases: $\sigma_{\Delta Vth}(m) = \sigma_{\Delta Vth}/\sqrt{N}$ }$

Example: Differential Amplifier (cont.)

- Current I_{S1} and I_{S2} are compared at nodes V_{C1} and V_{C2} to determine mismatch
 - Large transistor dimensions of M₃, M₄, and in the amplifier (A) ensure accurate comparison with low offsets

Example: Differential Amplifier Simulation

- Calibration impact on specifications:
 - 15% power increase
 - AC input impedance change < 1%
- Monte Carlo simulations
 - With parameter correlations for matched devices based on the number of fingers [1]

$$1/\sqrt{N} = \sqrt{1 - C_m}$$

• Ex.: M_1 , M_2 , M_{1S} , M_{2S} have 20 fingers (L = 90nm) $\rightarrow C_M = 0.95$

[1] Cadence Design Systems, "Recommended Monte Carlo Modeling Methodology for Virtuoso Spectre Circuit Simulator Application Note", pp. 13-18, Nov. 2003. Available: http://www.cdnusers.org/community/virtuoso/resources/spectre_mcmodelingAN.pdf

Mismatch Reduction: Component Values

Component	Dimensions / Value
M ₁ , M ₂ , M _{1S} , M _{2S}	W/L = 90nm × 20 fingers / 90nm
M ₃ , M ₄	W/L = $6.25\mu m \times 8$ fingers / $3.7\mu m$
R _L	1.12kΩ (L/W = 9µm / 2µm)
CL	0.1pF
R _B	100kΩ
C _{filt}	1pF
C _c	5pF
C _{st}	10pF
R _{cm}	100k Ω (L/W = 20 $ imes$ 10 μ m / 1 μ m)
Ι _B	1mA
Technology	90nm CMOS
Supply Voltage	1.2V

Mismatch Reduction: Amplifier Component Values

Operational Transconductance Amplifier (A)	
M _N	W/L = 8 μ m × 4 fingers / 4 μ m
M _P	W/L = 5µm × 2 fingers / 1.55µm
M _B	W/L = $3\mu m \times 4$ fingers / $1\mu m$
R _{fb}	38kΩ (L/W = 8 × 19µm / 1µm)
l _{bias}	50µA

Monte Carlo Simulation Results

- Mismatch reduction with calib. based on M_1/M_{1S} (M_2/M_{2S}) layout with 20 fingers (Cm = 0.95)
 - Input-referred offset voltage reduction: from 4.17mV to 1.29mV
 - Drain current difference (main transistors): 3.1% to 1.0%
- Mismatch reduction if the layout style ensures 1% matching ($C_m = 0.99$) for M_1/M_{1S} (M_2/M_{2S}) (e.g. common-centroid)
 - Input-referred offset voltage reduction: from 4.17mV to 0.76mV
 - Drain current difference (main transistors): 3.1% to 0.6%

Outline – Lecture 3

- On-chip DC and RF power measurements with differential temperature sensors
- Case study: differential temperature sensor design
- Temperature sensors as variation monitors
- Mismatch reduction for transistors in high-frequency differential analog signal paths
- Example: mixer design with analog tuning for transistors biased in weak inversion

DC Offsets and IIP2

- Mixer 2nd order intermodulation intercept point (IIP2)
 - Causes:
 - Device mismatches
 - Device non-linearities
 - Self-mixing (coupling between LO and RF ports)
 - Poor IIP2 results in signal distortion and DC offsets
 - Offsets after the mixer are amplified by the baseband section
 - Saturation due to limited voltage headroom
 - Increased dynamic range requirements for the baseband circuits and the ADC

Mixer IIP2 Tuning Example

- 5-bit load resistor control with switches D₁-D_N
- Reduced 2nd-order non-linearities due to mismatches
- +60dBm IIP2 (>20dB improvement)

K. Kivekas, A. Parssinen, J. Ryynanen, J. Jussila, and K. Halonen, "Calibration techniques of active BiCMOS mixers," *IEEE J. Solid-State Circuits*, vol. 37, no. 6, pp. 766-769, Jun 2002.

Effects of Device Mismatches on Mixer IIP2 Degradation

- IIP2 of mixers is very sensitive to device mismatches
 - \rightarrow guaranteed IIP2 > 40dBm requires compensation
 - IIP2 for a conventional double-balanced mixer [1]:

$$IIP2 = \frac{\sqrt{2}}{\pi \eta_{\text{nom}} \alpha_2} \times \frac{4}{[2 \cdot \Delta \eta (\Delta g_m + \Delta A_{\text{RF}})] + \Delta R_{\text{L}} (1 + \Delta g_m) (1 + \Delta A_{\text{RF}})}$$

- [1] M. Hotti, J. Ryynanen, K. Kivekas, and K. Halonen, "An IIP2 calibration technique for direct conversion receivers," in *Proc. IEEE Int. Symp. Circuits and Systems (ISCAS)*, vol. 4, pp. 257-260, May 2004.
- [2] K. Kivekas, A. Parssinen, J. Ryynanen, and J. Jussila, "Calibration techniques of active BiCMOS mixers," IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 766-769, June 2002.

IIP2 Degradation with Non-Ideal Switching Transistors

• IIP2 RMS voltage [3]: σ_{IIP}

$$\sigma_{\text{IIP2}} = \frac{(2/\pi) \cdot g_m}{\sqrt{L^2 \cdot [(\alpha_2^{\text{dif}})^2 + (\alpha_2^{\text{cm}})^2] + (\frac{\Lambda R_L}{R_L} \cdot \alpha_2^{\text{cm}})^2}}$$

- where: L is a statistically-varying mismatch parameter
 - g_m is the transconductance of the RF input transistor M_{RF} with 2^{nd} order nonlinearity:
 - * differential component: α_2^{dif}
 - * common-mode component: α_2^{cm}
 - R_L and ΔR_L are the value of the load resistors and their mismatch
- α_2^{cm} can be suppressed with a common-mode feedback circuit at the IF output
- Mismatch of the LO switching transistors limits the achievable IIP2 through parameter L

[3] D. Manstretta, M. Brandolini, and F. Svelto, "Second-order intermodulation mechanisms in CMOS downconverters," *IEEE J. Solid-State Circuits*, vol. 38, no. 3, pp. 394- 406, March 2003.

Signal-Dependent DC Offsets in Mixers

Offset contributions and improvement with digital RC-trimming from manually adjusting the load of a standalone mixer (programmable load resistors and capacitors)

- DC offset contributors
 - Static:
 - Device mismatch
 - LO signal imbalance
 - Dynamic:
 - Input signal power and modulation format
 - Frequency-dependent
 - Interference-dependent

Figure from: M. Hotti, J. Ryynanen, K. Kivekas, and K. Halonen, "An IIP2 calibration technique for direct conversion receivers," in *Proc. IEEE Int. Symp. Circuits and Systems (ISCAS)*, vol. 4, pp. 257-260, May 2004.

Mixer DC Offset Cancellation Considerations

- Complications in wideband multi-standard receivers with dynamic offset cancellation
 - Optimum performance would require digital mixer compensation trimming codes to be updated frequently to cancel dynamic DC offsets
 - Each new DAC setting (e.g. 5-bit trimming codes) will require a new digital performance measurement (BER, FFT, etc.) until the optimum settings have been determined
 - \rightarrow would require much longer & more frequency training sequences than static offset cancellation
- Anticipated improvements/challenges with automatic analog calibration
 - Fast analog feedback loop to cancel dynamic offsets
 - \rightarrow delay will depend only on the loop bandwidth/settling time, not on digital signal processing
 - Must ensure sufficient accuracy (µA-range currents) with PVT variations in the sensing devices

Mismatch Reduction: Application to Mixers

Double-balanced down-conversion mixer with mismatch reduction loops – conceptual view (DC loop gain per branch ≈ 42dB) 70

Mismatch Reduction: Application to Mixers (cont.)

Double-balanced down-conversion mixer with mismatch reduction loops - detailed view

71

Calibration Loop Offsets & Mismatches

DC signal flow diagram for one calibration loop with offsets

- Parasitic capacitances from the large devices are not critical in this DC calibration loop
- → Device dimensions can be increased until the simulated offsets are negligible
- Conditions to be met:

$$V_{OP} \ll \frac{\Delta I_{D} \{V_{A}, DM\}}{g_{m(MP)}} \qquad V_{OA} \ll \Delta I_{D} \{V_{A}, DM\} \times R$$

- * $g_{m(M1S)}$ and $g_{m(MP)}$ are representing the transconductance parameters of M_{1S} and M_{P}
- * V_{OP} is the gate-referred offset voltage of M_{P} , V_{OA} is input-referred offset voltage of amplifier A_1
- * Current $\Delta I_{D{VA, DM}}$ is the difference of the sensing transistor's drain-source current relative to the mean of the same current in the other branches, which depends on control voltage V_A and the device mismatches (DM)
- * R represents the resistance looking into the node at the drains of M_{1S} and M_P
Mixer Calibration Loop Circuits

Common-mode feedback circuit (CMFB) for the calibration loop

Frequency response of the main CMFB circuit

Mixer Calibration Loop Circuits (cont.)

74

Mixer Design Considerations

- Inductors (L_S) resonate with parasitic capacitances to improve the IIP2 performance [1]
- Common-mode feedback at the mixer output suppresses the common-mode IM2 components [2]
 - M. Brandolini, P. Rossi, D. Sanzogni, and F. Svelto, "A +78 dBm IIP2 CMOS direct downconversion mixer for fully integrated UMTS receivers," IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 552- 559, March 2006.
 - [2] M. Brandolini, M. Sosio, and F. Svelto, "A 750 mV fully integrated direct conversion receiver front-end for GSM in 90-nm CMOS," *IEEE J. Solid-State Circuits*, vol. 42, no. 6, pp. 1310-1317, June 2007.

Mixer Component Values

M_1, M_2, M_3, M_4	W/L = 2µm × 40 fingers / 0.13µm	
M _{RF}	W/L = 10µm × 40 fingers / 0.13µm	
M _{ctrL}	W/L = 1.2µm × 26 fingers / 0.25µm	
RL	3kΩ (L/W = 10 × 8.87μm / 8μm)	
CL	0.15pF	
L _s	7nH	
C _c	1pF	
R _b	100kΩ (L/W = 6 × 15.8µm / 1µm)	
$V_{b_{LO}}$ (nominal values of V_A, V_B, V_C, V_D)	0.665V	
V _{refL}	0.565V	
I _{DC}	200µA	

Monte Carlo Simulations: Mixer IIP2

LO frequency: 1.985GHz, RF test tones: 2GHz, 2.005GHz, IM2 frequency: 5MHz

Simulated Mixer Specifications with/without Calibration

	Without Calibration Circuitry	With Calibration Circuitry
RF Frequency	2GHz	2GHz
IF Bandwidth	< 124.9MHz	< 124.3MHz
Conversion Gain	11.5dB	11.5dB
IIP3	7.3dBm	7.3dBm
1-dB Compression Point	-7.7dBm	-7.8dBm
IIP2 (With 0.5% R _L Mismatch)	62.9dBm	63.0dBm
Avg. IIP2* (100 Monte Carlo runs)	58.9dBm	64.2dBm
Yield** (for IIP2 > 54dBm)	75%	91%
DSB Noise Figure	13.2dB	13.2dB
Flicker Noise Corner	266KHz	274KHz
LO-RF Isolation (2-2.3GHz)	> 110dB	> 110dB
LO-IF Isolation (2-2.3GHz)	> 185dB	> 182dB
RF-IF Isolation (2-2.3GHz)	> 80dB	> 79dB
Power (with auxiliary circuits)	0.68mW	0.97mW

0.13µm CMOS Technology with 1.2V Supply

* With foundry-supplied statistical models (process & mismatch) for all devices in the mixer and calibration circuits. ** Defined as the percentage of the Monte Carlo simulation outcomes that meet the IIP2 target.

Mixer Calibration: Settling Time

Transient settling behavior of critical control voltages

[offset voltages at the gates of (M₂, M₃, M₄) changed from 0V to (30mV, -15mV, -30mV) at time = 0s]

79

Mismatch Reduction: Summary & Conclusions

- Automatic analog calibration loop for transistor mismatch reduction
 - Intended for short-channel transistors in the differential RF signal path
 - Mismatch reduction by a factor of 3-4 times, depending on the layout configuration of the mismatch-sensing transistors
 - Loop converges within microseconds → suitable for fast coarse calibration (before system-level digital calibrations with convergence times in the milliseconds)
- 1st Application: active double-balanced mixer
 - Mismatch reduction loops enhance second-order linearity (IIP2) performance
 - From Monte Carlo simulations: IIP2 improvement of 5-10dB
 - Trade-offs:
 - 30% power increase
 - Estimated mixer layout area increase due to calibration circuitry: 2x
- Room for future research
 - Experimental verification: layout, fabrication, testing

M. Onabajo, D. Gómez, E. Aldrete-Vidrio, J. Altet, D. Mateo, and J. Silva-Martinez, "Survey of robustness enhancement techniques for wireless systems-on-a-chip and study of temperature as observable for process variations," *Springer J. Electronic Testing: Theory and Applications*, vol. 27, no. 3, pp. 225-240, June 2011.

Course Summary

- Main incentives for on-chip built-in test and calibration schemes
 - Increasing complexity of SoCs and worsening CMOS process variations
 - Improved fabrication yields and extended product reliability
 - Production test cost reduction
- Trend: system-level calibration strategies
 - Digital performance monitoring & calibration control
 - Digital and analog correction
 - Requires "knobs" to tune analog circuits
- Circuit-level features for performance enhancements
 - Demonstrated with examples
 - Alternative on-chip sensors for variation monitoring (e.g., thermal sensing)

Acknowledgements

- I would like to thank the UPC faculty and staff for hosting this short-course
- Collaborators on presented works
 - Universitat Politècnica de Catalunya
 - Josep Altet, Eduardo Aldrete-Vidrio, Diego Mateo, Didac Gómez
 - Texas A&M University
 - Jose Silva-Martinez, Edgar Sánchez-Sinencio, Mohamed Mobarak, Cho-Ying Lu, Venkata Gadde, Yung-Chung Lo, Hsien-Pu Chen, Vijay Periasamy, Felix Fernandez, Xiaohua Fan
 - Northeastern University
 - Chun-hsiang Chang, Hari Chauhan

Thank You.