Outline – Lecture 2

• Digitally-assisted analog circuit design & performance tuning
 ▪ LNAs
 ▪ Mixers
 ▪ Filters
 ▪ Example: subthreshold LNA design techniques

▪ Case study:
 Digitally-assisted linearization of operational transconductance amplifiers

▪ Case study:
 Variation-aware continuous-time $\Delta \Sigma$ analog-to-digital converter design
Example Application: Digitally-Assisted Analog Blocks

- Digitally-assisted receiver calibration
 - Analog tuning with digital-to-analog converters (DACs)
 - Digital correction and control
 - Requires programmable analog circuits for performance tuning
• Auxiliary transistor M_T (variable resistor) diverts signal current to the AC ground → Gain control (range: 3.6-12.5dB)

• C_B ensures that the DC bias remains unaffected

• Linearity could be affected

LNA Center Frequency Tuning Example

- Example application: WLAN (2.4GHz, 5GHz)

- 4-bit resolution for C_{var}
 $\rightarrow <0.4$dB gain error due to center frequency shift from process variations

• **S\(_{11}\) tuning**
 - \(L_g\) is tapped at 5 points in the outermost turn
 - Control: switches \(S_1-S_N\)

• **With automatic cal. loop**
 - Aux. amplifier, peak detector, digital logic
 - Converges within 30\(\mu\)s

• ~0.4dB lower NF (due to switches)

LNA Linearity

• Linearity Tuning
 ▪ MT Operates in triode region
 ▪ MS is biased in subthreshold
 ▪ Non-linearities of the main transistor M0 are canceled

• >10dB IM3 improvement

• With tuning knobs
 ▪ LNA linearity could be monitored in DSP or through power detectors
 ▪ More robust against PVT variations

• NF increases <0.25dB and power increases by 5%

Mixer IIP2 Tuning Example

- 5-bit load resistor control with switches D1-DN
- Reduced 2nd-order non-linearities due to mismatches
- +60dBm IIP2 (>20dB improvement)

• 4-bit bias current control with switches B_1-B_N
• Less I/Q gain error: 0.1-0.2dB → 0.05dB ($\Delta \theta_{I/Q} < 3.5^\circ$)
• 1.5dB gain tuning range (steps = 0.09-0.13dB)

- Reconfigurable: Chebyshev/Inv. Chebyshev, order: 1,3,5
- Continuously tunable: 1-20MHz cutoff frequency
- Power-adjustable: 3-7.5mW

Cutoff frequency tuning with adjustable elements in the filter sections

Coarse tuning with capacitors

Fine tuning with continuous impedance multipliers

Subthreshold Low-Noise Amplifier Design Techniques

Chun-hsiang Chang
Marvin Onabajo

Northeastern University
Low-Power Low-Noise Amplifier

- Motivation for biasing RF circuits in the subthreshold (weak inversion) region
 - High transition frequencies \(f_t \) of newer CMOS technologies enable subthreshold RF circuit design (< 3GHz) with sufficiently high transistor transconductance (gain)
 - **5-10 times less power consumption**

- Subthreshold design challenges
 - Degraded linearity & noise performance → for applications with relaxed requirements [wireless personal area network (WPAN), global positioning system (GPS), and wireless medical monitoring]
 - Larger devices → increased parasitic capacitances
Example: Input Impedance Matching

• Typical matching: $Z_{in} = 50\Omega$
 - $S_{11}(\text{dB}) = -\infty$ (ideal)
 - In practice: $-20\text{dB} < S_{11} < -10\text{dB}$

• Conventional approximation:

$$Z_{in} = L_s \frac{g_{m1}}{C_{gs1}} + j \left[\omega (L_s + L_g) - \frac{1}{\omega C_{gs1}} \right]$$
Issues with Subthreshold Biasing

• Larger parasitic capacitances
 - \(C_{gg} = C_{gs} + C_{gd} + C_{gb} \)
 - Inaccurate \(Z_{in} \) approximation with the conventional equation

• Different contributions to the total gate capacitance \((C_{gg}) \):

![Diagram showing contributions of parasitics to \(C_{gg} \) vs \(V_{ov} \) in subthreshold and strong inversion regions.](image)
Improved Z_{in} Estimation

- Equations include the effects of C_{gs}, C_{gd}, C_{gb}
- Impact of M_2 (load) is considered
- Simplified calculations with a Matlab script

\[Z_{in} = sL_g + r_{g1} + Z'_{in} \parallel \frac{1}{sC_{MF}} \]

where:
- r_{g1} is the small-signal gate resistance of M_1
- C_{MF} is the effective input Miller capacitance
- Z'_{in} is the impedance looking into the gate (without r_{g1}) → very long equation
Simulation Results

- Desired matching frequency: 2.4 GHz
- 0.18 µm CMOS technology
- Comparison with different operating regions:

![Graph showing matching frequency and S11 minimum](image)

- Matching frequency (at which the S11 minimum occurs)
- Minimum S11

Super-threshold → Subthreshold

- Proposed (Matlab script)
- Conventional equation

![Graph showing g_m/I_D vs. frequency and S11](image)

- g_m/I_D [S/A]
- Frequency [GHz]
- S11 at the matching frequency [dB]
Simulation Results

- Desired matching frequency: 2.4 GHz
- 0.18 µm CMOS technology
- Comparison with transconductance values:

- Matching frequency (at which the S_{11} minimum occurs)
- Minimum S_{11}
Digitally-Controllable Tuning

- Allows digitally-assisted enhancement of S_{11} to compensate for process variations
- Based on newly proposed equations
- Programmable bank of metal-insulator-metal (MIM) capacitors
Performance with Tuning

<table>
<thead>
<tr>
<th>Condition 1: TT models, 27°C, V_{dd}</th>
<th>Reference LNA</th>
<th>Tunable LNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>S11 [dB]</td>
<td>-32.1</td>
<td>-26.4 [00111]</td>
</tr>
<tr>
<td>S21 [dB]</td>
<td>14.1</td>
<td>14.0</td>
</tr>
<tr>
<td>NF [dB]</td>
<td>4.9</td>
<td>5.1</td>
</tr>
<tr>
<td>P1dB [dBm]*</td>
<td>-19.0</td>
<td>-17.6</td>
</tr>
<tr>
<td>IIP3 [dBm]</td>
<td>-11.4</td>
<td>-9.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition 2: FF models, 85°C, +20% V_{dd}</th>
<th>Reference LNA</th>
<th>Tunable LNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>S11 [dB]</td>
<td>-14.4</td>
<td>-27.0 [01010]</td>
</tr>
<tr>
<td>S21 [dB]</td>
<td>13.7</td>
<td>13.2</td>
</tr>
<tr>
<td>NF [dB]</td>
<td>4.6</td>
<td>5.0</td>
</tr>
<tr>
<td>P1dB [dBm]*</td>
<td>-15.2</td>
<td>-13.4</td>
</tr>
<tr>
<td>IIP3 [dBm]</td>
<td>-8.7</td>
<td>-6.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition 3: FF models, 85°C, +20% V_{dd}, -15% L, -15% Lp</th>
<th>Reference LNA</th>
<th>Tunable LNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>S11 [dB]</td>
<td>-9.4</td>
<td>-19.5 [10000]</td>
</tr>
<tr>
<td>S21 [dB]</td>
<td>13.8</td>
<td>12.4</td>
</tr>
<tr>
<td>NF [dB]</td>
<td>4.5</td>
<td>5.6</td>
</tr>
<tr>
<td>P1dB [dBm]*</td>
<td>-15.7</td>
<td>-12.6</td>
</tr>
<tr>
<td>IIP3 [dBm]</td>
<td>-8.8</td>
<td>-5.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition 4: SS models, -40°C, -20% V_{dd}</th>
<th>Reference LNA</th>
<th>Tunable LNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>S11 [dB]</td>
<td>-15.6</td>
<td>-32.8 [00011]</td>
</tr>
<tr>
<td>S21 [dB]</td>
<td>12.6</td>
<td>13.1</td>
</tr>
<tr>
<td>NF [dB]</td>
<td>4.5</td>
<td>4.4</td>
</tr>
<tr>
<td>P1dB [dBm]*</td>
<td>-20.4</td>
<td>-19.4</td>
</tr>
<tr>
<td>IIP3 [dBm]</td>
<td>-12.6</td>
<td>-11.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition 5: SS models, -40°C, -20% V_{dd}, -15% L, +15% Lp</th>
<th>Reference LNA</th>
<th>Tunable LNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>S11 [dB]</td>
<td>-8.2</td>
<td>-18.8 [00000]</td>
</tr>
<tr>
<td>S21 [dB]</td>
<td>12.2</td>
<td>13.4</td>
</tr>
<tr>
<td>NF [dB]</td>
<td>4.9</td>
<td>4.4</td>
</tr>
<tr>
<td>P1dB [dBm]*</td>
<td>-20.5</td>
<td>-20.4</td>
</tr>
<tr>
<td>IIP3 [dBm]</td>
<td>-12.5</td>
<td>-12.4</td>
</tr>
</tbody>
</table>

- Tunable LNA design with almost identical specifications as the reference LNA
- S11 improvement: >10dB
- The tuning has small impact on other performance parameters
- Next step: Linearity improvement and tuning
Outline – Lecture 2

• Digitally-assisted analog circuit design & performance tuning
 ▪ LNAs
 ▪ Mixers
 ▪ Filters
 ▪ Example: subthreshold LNA design techniques

▪ Case study:
 Digitally-assisted linearization of operational transconductance amplifiers

▪ Case study:
 Variation-aware continuous-time ΔΣ analog-to-digital converter design
Digitally-Assisted Receiver Calibration – Revisited

- Next case study: baseband filter
 - High linearity over wide frequency range
 - Digital programmability
Motivation for OTA Linearization

- Applications with operational transconductance amplifiers (OTAs)
 - On-chip filters in the 100-200MHz frequency range
 - In the intermediate frequency stage of wireless receivers
 - Continuous-time $\Sigma\Delta$ analog-to-digital converters
 - Transconductance-capacitor baseband filters
 - Baseband frequency < 50MHz
 - (ex. comm. standards: WiMAX, WLAN, WCDMA, UMTS)
 - Third-order intermodulation distortion (IM3) < -60dB

- Project objectives
 - Cancellation of OTA non-linearities (signal distortion reduction)
 - Robustness of the linearization to process variations
 - Compensation for frequency-dependent linearity degradation
The Problem of Limited Linearity

- Mathematical representation of non-linear behavior
 - Amplitude of a sinusoidal input signal: V_{in}
 - Output current (i_{out}) can be expressed as:
 - **Linear**: $i_{lin}\{V_{in}\} = Gm \times V_{in}$
 - **Non-linear**: $i_{non-lin}\{V_{in}\} = g_{m2} \times V_{in}^2 + g_{m3} \times V_{in}^3 + \ldots$
 where g_{m2}, g_{m3}, \ldots are Taylor series coefficients

- Practical issues
 - Distorted output current
 - Undesired spectral components at multiples of the frequency f_0 →
 - Typical limit without linearization: HD3 is 50-60dB below the fundamental
 - Frequency dependence: worse linearity at high frequencies
Linearization Basics

- Linearity Improvement Concepts
 - Harmonics can be reduced by:
 - Signal attenuation
 - Cancellation
 - Feedback
 - Even-order harmonics are suppressed in fully-differential circuits

Spectrum for a fully-differential OTA without odd-order cancellation
Proposed Linearization

• Concept
 ▪ Identical auxiliary path generates the same distortion as in the main path
 ▪ The predistorted signal is subtracted at the input of the OTA in the main path
 ▪ Result: cancellation of distortion

• Effective transconductance
 ▪ \(G_{\text{m eff}} = \frac{1}{2} G_m \) of non-linearized OTA with input-attenuation factor of 0.5
 ▪ Same dimensions & operating conditions in both paths

• Conditions for cancellation
 ▪ \(G_m \times R = 1 \) in aux. path
 ▪ \(R_c \approx R \) for optimum cancellation
 ▪ \(R_c \) & \(C_i \) provide phase shift → 1st-order frequency compensation

\[
\begin{align*}
 i_{\text{aux}} &= G_m V_{\text{in}}/2 + i_{\text{non-lin}}(V_{\text{in}}/2) \\
 V_x &= V_{\text{in}}/2 + i_{\text{non-lin}}(V_{\text{in}}/2) \times R \\
 V_{\text{diff}} &= V_{\text{in}}/2 - i_{\text{non-lin}}(V_{\text{in}}/2) / G_m \\
 i_{\text{out}} &\approx G_m V_{\text{in}}/2 + i_{\text{non-lin}}(V_{\text{in}}/2) - i_{\text{non-lin}}(V_{\text{in}}/2) \approx G_m V_{\text{in}}/2
\end{align*}
\]

* \(i_{\text{non-lin}}(V_m) \) represents the distortion components of the current generated by \(G_m \) with input voltage amplitude \(V_m \)
Single-Ended OTA for High-Frequencies

• Topology modified from the typical 3-current mirror OTA
 • Source degeneration resistors (Rd) in the output stage
 • Similar output resistance as a cascode stage with minimum-length transistors in 0.13μm technology
 • High linearity with large signal swings
 • Minimum length transistors (min. parasitic capacitances) for 100MHz operation

• Key component values
 • \(R = 1.28k\Omega \approx 1/Gm \)
 • \(R_c = 1.28k\Omega, C_i = 240fF \)

• Basic specifications →
 (0.13μm CMOS, 1.2V supply)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gm</td>
<td>776μA/V</td>
</tr>
<tr>
<td>Excess Phase</td>
<td>2.6° at 100MHz</td>
</tr>
<tr>
<td>(R_o)</td>
<td>13kΩ</td>
</tr>
<tr>
<td>Gain Bandwidth Product</td>
<td>622MHz</td>
</tr>
<tr>
<td>Power</td>
<td>2.4mW</td>
</tr>
</tbody>
</table>
Simulations: Single-Ended OTA

- Output current spectra from IM3 tests
 - $V_{\text{in}_{\text{peak-peak}}} = 200\text{mV}$, test tones at 100MHz and 105MHz
 - Linearity improvements
 - IM3: 19dB, HD2: 28dB, HD3: 30dB
 - THD: 29dB (20dB in a 2nd-order bandpass filter)
 - Trade-offs
 - Noise increase (~1.6x), power consumption (2x), area (2x)

OTA with input-attenuation factor of 0.5
IM3 = -42.8dB at 100MHz

Linearized OTA (attenuation-predistortion)
IM3 = -61.8dB at 100MHz
Variation of Resistor R & Calibration

- $\Delta THD < 5.4$dB requires accuracy of R within 4%

- Some form of calibration is necessary
 - Digital (implemented):
 R can be adjusted with discrete steps until $Gm \times R = 1$
 - Analog tuning also a possibility:
 comparison of V_{in} and V_x with an error amplifier
 (V_{peak}, V_{rms}, etc. should be identical), automatic
 adjustment of R (transistor biased in triode region)

THD vs. %-variation of resistor R

$$\begin{align*}
A &\approx \{0 - 88.117\%\} \\
B &\approx \{4 - 62.713\%\} \\
\text{slope} &\approx 1.35098
\end{align*}$$

Auxiliary OTA:

Total $R_c = 1.28k\Omega$ (this design)
Variation of Resistor Rc & Calibration

ΔTHD < 6dB requires accuracy of Rc within 4%

Requires same calibration approach as for resistor R
 ▪ Simplest: cycling through switch combinations until optimum linearity
 ▪ Options to assess performance in the digital domain:
 ▪ Monitor HD3 or THD (if A/D, DSP are available)
 ▪ In receivers: monitor bit error rate

THD vs. %-variation of resistor Rc

Total Rc = 1.28kΩ (this design)
Single-Ended OTA: Schematic Simulations

Comparison with $V_{\text{in}_{\text{p-p}}} = 200\text{mV}$ @ 100MHz:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference OTA</th>
<th>Linearized OTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_{m_{\text{effective}}}$</td>
<td>$G_{m}/2$</td>
<td>$G_{m}/2$</td>
</tr>
<tr>
<td>THD</td>
<td>1.32% (-37.6dB)</td>
<td>0.048% (-66.8dB)</td>
</tr>
<tr>
<td>HD2 (below fundamental)</td>
<td>37.68dB</td>
<td>66.68dB</td>
</tr>
<tr>
<td>HD3 (below fundamental)</td>
<td>54.35dB</td>
<td>84.26dB</td>
</tr>
<tr>
<td>IM3, $\Delta f=5\text{MHz}$ (below fundamental)</td>
<td>42.8dB</td>
<td>61.9dB</td>
</tr>
<tr>
<td>Input-referred noise</td>
<td>17.3nV/$\sqrt{\text{Hz}}$</td>
<td>27.7nV/$\sqrt{\text{Hz}}$</td>
</tr>
</tbody>
</table>

Comparison with $V_{\text{in}_{\text{p-p}}} = 200\text{mV}$ @ 10MHz:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference OTA</th>
<th>Linearized OTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_{m_{\text{effective}}}$</td>
<td>$G_{m}/2$</td>
<td>$G_{m}/2$</td>
</tr>
<tr>
<td>THD</td>
<td>1.31% (-37.7dB)</td>
<td>0.021% (-73.6dB)</td>
</tr>
<tr>
<td>HD2 (below fundamental)</td>
<td>37.78dB</td>
<td>73.49dB</td>
</tr>
<tr>
<td>HD3 (below fundamental)</td>
<td>53.88dB</td>
<td>93.03dB</td>
</tr>
<tr>
<td>IM3, $\Delta f=0.5\text{MHz}$ (below fundamental)</td>
<td>42.8dB</td>
<td>67.2dB</td>
</tr>
<tr>
<td>Input-referred noise</td>
<td>18.7nV/$\sqrt{\text{Hz}}$</td>
<td>29.1nV/$\sqrt{\text{Hz}}$</td>
</tr>
</tbody>
</table>
Fully-Differential OTA Linearization

- Design for high performance
 - High-frequency operation
 - Common-mode noise rejection
 - Differential signal swing (2x larger)
 - Floating-gate transistors as attenuators

- Generalized conditions for attenuation-predistortion linearization
 - Weakly non-linear operation: \(k_2 G_m R \leq 1 \)
 - Non-linearity cancellation:
 \[
 (1 - k_1) G_m R = 1, \quad k_2 = k_1 / 2
 \]
 - Effective transconductance: \(G_{m_{\text{eff}}} = k_2 G_m \)

- To ensure IM3 \(\approx 0 \) based on Volterra series analysis to take high-frequency effects of capacitors into account:
 \[
 R_c \approx \frac{(1 - k_1) + 2C_o / C}{2k_1} R
 \]

- This design: \(k_1 = 2/3, \quad k_2 = 1/3 \)
 \[R_c = (R/4)(1+6C_o / C) \]
Fully-Differential OTA

- **Folded-cascode OTA** (implements G_m in main and auxiliary paths)

 - Error amplifier compensation with resistor R_z in CMFB extends the bandwidth of the common-mode rejection:

 $$GBW \approx \sqrt{A_0 \cdot \omega_p \cdot \omega_3} \approx \sqrt{A_0 \cdot \omega_p \cdot \frac{2}{R_z (C_{gs} / 2 + (g_{mL} R_L / 2) C_{dg})}}$$

 - Affect of R_z on stability according to phase margin (PM):

 $$PM \approx \tan^{-1}\left(\frac{2 R_z C_{dg}^2}{C_{gs} / 2 + (g_{mL} R_L / 2) C_{dg}}\right)$$

Error amplifier circuit in the common-mode feedback (CMFB) loop

Parameter	**Measurement**
Transconductance (G_m) | 510 μA/V
IM3 @ 50MHz (Vin = 0.2 Vp-p) | -55.3 dB
Noise (input-referred) | 13.3 nV/√Hz
Power with CMFB | 2.6 mW
PSRR @ 50MHz | 48.9 dB
Supply | 1.2 V
High-Frequency Effects & Process Variation

- Theoretical IM3 higher than 70dBc with up to ±10% variation of Gm and ±5% of Rc
 - Not always ensured by matching devices in the layout → programmable resistors for tuning
 - Robustness was verified with schematic corner and component mismatch simulations
- Sensitivity of IM3 (in dBc) to component mismatches:

10MHz signal frequency

200MHz signal frequency
Simulated Fully-Diff. OTA: Resistor Variations

- IM3 better than 71dBc for ±7.5% Rc-variation
- IM3 better than 71dBc for ±3.3% R-variation in the presence of 10% Gm-mismatch
- Reference OTA has IM3 of 51dBc

Theoretical IM3:

\[
i_{IM3} \approx g_m^3 \left(\frac{k_1 / 2}{1 + 2C_p / C} \right)^3 \left(3V_{in1}V_{in2} / 4 \right) \left(\frac{1 + j\omega C((1 - k_1)R - k_1 R_c) + 2j\omega C_o R}{1 + j\omega b - c\omega^2} \right) \left(\frac{1 - j\omega C((1 - k_1)R - k_1 R_c) - 2j\omega C_o R}{1 - j\omega b - c\omega^2} \right)
\]

\[
- g_m^3 \left(\frac{k_1 / 2}{1 + 2C_p / C} \right)^3 \left(3V_{in1}V_{in2} / 4 \right) \left(\frac{1 + j\omega Ck_1 R_c}{1 + j\omega b - c\omega^2} \right)
\]
Measurements: Standalone OTAs

- 0.13μm CMOS Testchip
- Reference OTAs & linearized OTAs (fully-differential → input attenuation = 1/3)

<table>
<thead>
<tr>
<th>OTA Type</th>
<th>Input-referred Noise</th>
<th>IM3 (V_{in} = 0.2 V_{p-p})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50 MHz</td>
</tr>
<tr>
<td>Reference (input attenuation = 1/3)</td>
<td>13.3 nV/√Hz</td>
<td>-55.3 dB</td>
</tr>
<tr>
<td>Linearized (attenuation = 1/3)</td>
<td>21.8 nV/√Hz</td>
<td>-77.3 dB</td>
</tr>
</tbody>
</table>
Measurements: Standalone OTAs (cont.)

IM3 vs. input voltage for reference OTA and linearized OTA
(two test tones having 100kHz separation around 350MHz)

IM3 dependence of the linearized OTA on phase shift at 350MHz.
(The least significant bit of the digital control code changes the value of phase shift resistor R_c by \sim3%)
Fully-Differential OTA Comparison With Previous Works

- Figure of Merit [1]:
 - FOM = NSNR + 10log(f/1MHz) where:
 - NSNR = SNR\(_{\text{dB}}\) + 10log[(IM3\(_N\) / IM3) (BW / BW\(_N\)) (P\(_N\) / P\(_{\text{dis}}\))] from [2]
 - Normalizations:
 SNR integrated over 1MHz, IM3\(_N\) = 1\%, bandwidth BW\(_N\) = 1Hz , power P\(_N\) = 1mW

- Competitive performance with respect to the state of the art
 - Effective trade-offs between linearity, power, noise

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IM3</td>
<td>-</td>
<td>-47 dB</td>
<td>-70 dB</td>
<td>-60 dB</td>
<td>-</td>
<td>-74.2 dB</td>
</tr>
<tr>
<td>IIP3</td>
<td>-12.5 dBV</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7 dBV</td>
<td>7.6 dBV</td>
</tr>
<tr>
<td>f</td>
<td>275 MHz</td>
<td>10 MHz</td>
<td>20 MHz</td>
<td>40 MHz</td>
<td>184 MHz</td>
<td>350 MHz</td>
</tr>
<tr>
<td>Input voltage</td>
<td>-</td>
<td>0.2 V(_p-p)</td>
<td>1.0 V(_p-p)</td>
<td>0.9 V(_p-p)</td>
<td>-</td>
<td>0.2 V(_p-p)</td>
</tr>
<tr>
<td>Power / transconductor</td>
<td>4.5 mW</td>
<td>1.0 mW</td>
<td>4 mW</td>
<td>9.5 mW</td>
<td>1.26 mW</td>
<td>5.2 mW</td>
</tr>
<tr>
<td>Input-referred noise</td>
<td>7.8 nV/\sqrt{Hz}</td>
<td>7.5 nV/\sqrt{Hz}</td>
<td>70.0 nV/\sqrt{Hz}</td>
<td>23.0 nV/\sqrt{Hz}</td>
<td>53.7 nV/\sqrt{Hz}</td>
<td>21.8 nV/\sqrt{Hz}</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>1.2 V</td>
<td>1.8 V</td>
<td>3.3 V</td>
<td>1.5 V</td>
<td>1.8 V</td>
<td>1.2 V</td>
</tr>
<tr>
<td>Technology</td>
<td>65nm CMOS</td>
<td>0.18(\mu)m CMOS</td>
<td>0.5(\mu)m CMOS</td>
<td>0.18(\mu)m CMOS</td>
<td>0.18(\mu)m CMOS</td>
<td>0.13(\mu)m CMOS</td>
</tr>
<tr>
<td>FOM(_{\text{dB}})</td>
<td>87.5</td>
<td>92.9</td>
<td>96.1</td>
<td>99.1</td>
<td>100</td>
<td>105.6</td>
</tr>
</tbody>
</table>

* Power/transconductor calculated from filter power. Individual OTA characterization results not reported in full.
OTA Linearization References

• Cited on the previous slide:

OTA Linearization without Increased Power

- Requires redesign of the OTA with 50% of the initial bias current
 - Increased W/L ratio to maintain the same transconductance value
 - Parasitic capacitances of the larger devices lead to bandwidth (f_{3dB}) reduction
 - Gate-source overdrive (saturation) voltage is approximately 50% less

- Trade-off to maintain similar transconductance and +20dB linearity enhancement without power increase: Bandwidth reduction

- Example – Comparison after linearization (redesign of the fully-differential OTA) with the same power consumption as the non-linearized reference OTA:

| OTA type | V_{DSAT} of input diff. pair | f_{3db} with 50Ω load | Input-referred noise | Power | $IM3$ ($V_{in} = 0.2 \ V_{p-p}$) | Normalized $|FOM|$ (at f_{max}) |
|---------------------------|--------------------------------|------------------------|----------------------|-------|---------------------------------|----------------------------------|
| Reference (input attenuation = 1/3) | 90 mV | 2.49 GHz | 9.7 nV/√Hz | 2.6 mW | -53.1 dB at $f_{max} = 350MHz$ (-53.2 dB at 100MHz) | 57.2 |
| Linearized (attenuation = 1/3 & compensation) | 54 mV | 1.09 GHz | 14.3 nV/√Hz | 2.6 mW | -77.1 dB at $f_{max} = 100MHz$ | 119.2 |
Measurements: Filter with Linearized OTAs

- IM3 ≈ -70dB up to 150MHz (with 0.2V_{p-p} input)
- Broadband linearity thanks to the phase shifter (IM3 = -66.1dB at 200MHz, filter corner frequ. = 194.7MHz)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corner frequency (f_{3db})</td>
<td>194.7 MHz</td>
</tr>
<tr>
<td>Passband gain</td>
<td>0 dB</td>
</tr>
<tr>
<td>Quality factor</td>
<td>1</td>
</tr>
<tr>
<td>Gm_{1,2,3,4}</td>
<td>510 \mu A/V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linearized Filter</th>
<th>IM3 (V_{in} = 0.2 V_{p-p})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 MHz</td>
</tr>
<tr>
<td></td>
<td>-73.9 dB</td>
</tr>
</tbody>
</table>

IM3 with compensated OTAs (input: 0.2V_{p-p}@150MHz)
Measurements: Filter with Fully-Differential OTAs

Frequency response of the 2nd - order low-pass filter

IM3 vs. input peak-peak voltage (two test tones having 100kHz separation around 150MHz)

IIP3 = 14.0dBm
(two tones, Δf = 100kHz around 150MHz)

IIP2 = 13.4dBm
(two tones, Δf = 100kHz around 2MHz)
Wideband G_m-C Low-Pass Filter Comparison

<table>
<thead>
<tr>
<th>Filter order</th>
<th>[A]</th>
<th>[B]</th>
<th>[C]</th>
<th>[D]</th>
<th>[E]</th>
<th>[F]</th>
<th>[G]</th>
<th>presented work</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_c (max.)</td>
<td>275MHz</td>
<td>184MHz</td>
<td>120MHz</td>
<td>200MHz</td>
<td>200MHz</td>
<td>500MHz</td>
<td>300MHz</td>
<td>200MHz</td>
</tr>
<tr>
<td>Signal swing</td>
<td>-</td>
<td>0.30V$_{pp}$</td>
<td>0.20V$_{pp}$</td>
<td>0.88V$_{pp}$</td>
<td>0.80V$_{pp}$</td>
<td>0.50V$_{pp}$</td>
<td>-</td>
<td>0.75V$_{pp}$</td>
</tr>
<tr>
<td>Linearity with max. Vin$_{pp}$</td>
<td>-</td>
<td>HD3, HD5: < -45dB</td>
<td>THD: -50dB @ 120MHz</td>
<td>THD: -40dB @ 20MHz</td>
<td>THD: -42dB @ 200MHz</td>
<td>THD: < -40dB @ 70MHz</td>
<td>-</td>
<td>THD < -40dB @ 150MHz</td>
</tr>
<tr>
<td>In-band IIP3</td>
<td>-12.5dBV (0.5dBm)</td>
<td>7dBV (20dBm)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.9dBV (16.9dBm)</td>
<td>1.0dBV (14.0dBm)</td>
</tr>
<tr>
<td>In-band IIP2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Out-of-band IIP3</td>
<td>-8dBV (5dBm)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Out-of-band IIP2</td>
<td>15dBV (28dBm)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Power</td>
<td>36mW</td>
<td>12.6mW</td>
<td>120mW</td>
<td>48mW</td>
<td>210mW</td>
<td>100mW</td>
<td>72mW</td>
<td>20.8mW</td>
</tr>
<tr>
<td>Power per pole</td>
<td>7.2mW</td>
<td>2.5mW</td>
<td>15mW</td>
<td>12mW</td>
<td>30mW</td>
<td>20mW</td>
<td>24mW</td>
<td>10.4mW</td>
</tr>
<tr>
<td>Input-referred noise</td>
<td>7.8nV/√Hz</td>
<td>53.7nV/√Hz</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5nV/√Hz</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>44dB</td>
<td>43.3dB</td>
<td>45dB</td>
<td>58dB</td>
<td>-</td>
<td>52dB</td>
<td>-</td>
<td>54.5dB</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>1.2V</td>
<td>1.8V</td>
<td>2.5V</td>
<td>2V</td>
<td>3V</td>
<td>3.3V</td>
<td>1.8V</td>
<td>1.2V</td>
</tr>
<tr>
<td>Technology</td>
<td>65nm CMOS</td>
<td>180nm CMOS</td>
<td>250nm CMOS</td>
<td>350nm CMOS</td>
<td>350nm CMOS</td>
<td>250nm CMOS</td>
<td>350nm CMOS</td>
<td>180nm CMOS</td>
</tr>
</tbody>
</table>

OTA Linearization: Summary & Conclusions

• Proposed linearization technique
 ▪ For OTAs in transconductance-C filter applications
 ▪ Independent of the OTA circuit topology
 ▪ Allows linearity, noise, power design trade-offs

• Measured performance
 ▪ IM3 improvement of up to 22dB
 ▪ Performance meets state-of-the-art requirements

• Compensation for PVT variations and high-frequency effects
 ▪ Based on digital adjustment of resistors
 ▪ Main amplifier can be optimized for its target application
 (no internal circuit design change due to the linearization scheme)

Outline – Lecture 2

• Digitally-assisted analog circuit design & performance tuning
 ▪ LNAs
 ▪ Mixers
 ▪ Filters
 ▪ Example: subthreshold LNA design techniques

▪ Case study: Digitally-assisted linearization of operational transconductance amplifiers

▪ Case study: Variation-aware continuous-time ΔΣ analog-to-digital converter design
Digitally-Assisted Receiver Calibration – Revisited

- Next case study: continuous-time $\Delta \Sigma$ analog-to-digital converter design
 - High Signal-to-noise-and-distortion ratio (SNDR) over wide bandwidth
 - Robustness to performance degradation from component mismatches

![Diagram of a receiver system with I-Path and Q-Path, including components like mixer, filter, DACs, and ADCs.](image-url)
Variation-Aware Continuous-Time ΔΣ Analog-to-Digital Converter Design

Team at Texas A&M University:

Cho-Ying Lu, Marvin Onabajo, Venkata Gadde, Yung-Chung Lo, Hsien-Pu Chen, Vijay Periasamy, Jose Silva-Martinez
Specific Quantizer Application Overview

• Analog-to-digital converter (ADC) group project
 ▪ Continuous-time low-pass $\Sigma\Delta$ modulator with competitive specifications
 ▪ 25MHz bandwidth, sampling frequency = 400MHz
 ▪ Signal-to-noise-and-distortion ratio (SNDR) = 67.7dB
 ▪ Power consumption = 48mW
 ▪ Robustness to performance degradation from component mismatches
 ▪ Device mismatches → non-linearities (signal distortion) → SNDR degradation
 ▪ Novel multi-bit feedback with a single-element digital-analog-converter (DAC) using pulse width modulation (PWM)
 → Avoids non-linearities from unit element mismatches
 (encountered in conventional multi-bit DACs)

• Presentation focus: 3-bit quantizer
 ▪ Proposed topology is optimized for the PWM DAC approach (multiple clock phases)
 ▪ Option for adjusting quantization levels to compensate for process variations
Basic $\Sigma\Delta$ Modulation Concepts

- Highlights of relevant multi-bit DAC/quantizer effects:
 - Reduced quantization noise $\rightarrow \sigma_{\text{quant. noise}} = \frac{V_{\text{full-swing}}}{2^{\text{bits}} \cdot \sqrt{12}}$
 - Improved stability
 - DAC non-linearity at V_{in} is not suppressed by the feedback loop! \rightarrow More sensitivity to mismatches from process variations!
Conventional 3-Bit Flash Quantizer
Two-Step ADC Principle

- Subranging
 - Most-significant bit(s) (MSB) are resolved first (fixed reference V_{ref1})
 - Least-significant bit(s) (LSB) are quantized with variable references V_{ref2a} and V_{ref2b}
 - V_{ref2a} and V_{ref2b} depend on the MSB value
- Multi-step quantization can reduce area and power consumption when a delay of multiple clock cycles is acceptable

Modern “Flash-like” ADC Examples

• Alternative architectures take advantage of technology scaling (fast switching)
 ▪ Enhanced performance at higher conversion speeds
 ▪ Reduced power consumption
 ▪ Improving compatibility with digital CMOS processes

• Folding flash ADC
 ▪ Comprised of 16 instead of 31 (conventional flash) comparators for 5-bit resolution
 ▪ 1.75 GS/s in 90nm CMOS, 2.2mW, 5-bit res.

• Asynchronous ADC
 ▪ Asynchronous successive approximations performed with a single comparator
 ▪ Input is weighted against a reference that is changed with a switchable capacitor array
 ▪ 600-MS/s in 0.13µm CMOS, 5.3-mW
More Modern “Flash-like” ADC Examples

• Two-step ADC
 ▪ MSB is quantized first
 ▪ LSBs are determined with an asynchronous binary-search procedure
 ▪ 150MS/s in 90nm CMOS, 133µW, 7-bit res.

• Other related references:

Taking Advantage of Fast-Switching

- Multi-phase digital-analog-converter (DAC) & quantizer approach
 - Exploits the inherent linearity of the single-element DAC
 - Same charge injected into the filter as with the conventional multi-bit feedback DAC
 - Multi-bit feedback with a single-element DAC
 - No element mismatch, low layout complexity, low power
 - 7 clock phases → accurate low-jitter phases from an injection-locked frequency divider

- Requirement trade-offs (conventional vs. multi-phase):
 - Good device matching → accurate low-jitter clock generation
 - Large device dimensions (older CMOS) → fast-switching transistors (modern CMOS)
Low-Jitter Clock Generation

- Generation of 7 low-jitter clock phases at 400MHz
 - 2.8GHz inductor-capacitor (LC) tank voltage-controlled oscillator (VCO)
 * Improves phase noise (jitter) of the locked ring oscillator
 - Ring oscillator output phases control the timing of the quantizer & DAC logic circuits

3-Bit Successive Approximation Quantizer

- 2-step current-mode quantization
 - 1st: Most significant bit (MSB) decision
 - 2nd: Successive comparisons of the sampled input with three reference levels

- Clocking
 - Sampling at 400MHz
 - Timing signals derived from the 7-phase clock generation for the DAC

- Current-mode comparison
 - Matched transconductors (G_m)
 - Reference currents are switched and compared to I_{in}
 - Fast low-voltage differential signaling configuration ($R_{cmp} < 500\Omega$)
 - Ref. voltages can be un-buffered (a low source output impedance is not required)

Simplified single-ended equivalent circuit
Quantizer Operation

- Fully-differential circuit
- Matched branches \((M_p, M_{sw}, M_n)\)
- Currents driven into low impedance nodes for fast decisions \((T/7 \approx 360\text{ps})\)
Quantizer Simulations

- Implementation in 0.18μm CMOS with 1.8V supply
 - 24mW power consumption
 - 5mV resolution
 - Tunability to allow for PVT variations
 - Quantization levels can be shifted up to 30mV
 - Reference voltages are not in the direct signal path
 - Layout area of quantizer & timing circuitry: 750μm x 520 μm

Differential Input MSB B2 B1 B0

<table>
<thead>
<tr>
<th>Range</th>
<th>MSB</th>
<th>B2</th>
<th>B1</th>
<th>B0</th>
</tr>
</thead>
<tbody>
<tr>
<td>150mV to 200mV</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>100mV to 150mV</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>50mV to 100mV</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0 to 50mV</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-50mV to 0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-100mV to -50mV</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-150mV to -100mV</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-200mV to -150mV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Ramp test: output bits for -200mV < V_{in} < 200mV
CT $\Sigma\Delta$ Modulators: State of the Art

<table>
<thead>
<tr>
<th></th>
<th>[A]</th>
<th>[B]</th>
<th>[C]</th>
<th>[D]</th>
<th>[E]</th>
<th>[F]</th>
<th>[G]</th>
<th>This Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak SNDR</td>
<td>72dB</td>
<td>82dB</td>
<td>60dB</td>
<td>69dB</td>
<td>70dB</td>
<td>74dB</td>
<td>78.1dB</td>
<td>67.7dB</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>10MHz</td>
<td>10MHz</td>
<td>20MHz</td>
<td>20MHz</td>
<td>20MHz</td>
<td>20MHz</td>
<td>20MHz</td>
<td>25MHz</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>40mW</td>
<td>100mW</td>
<td>10.5mW</td>
<td>56mW</td>
<td>28mW</td>
<td>20mW</td>
<td>87mW</td>
<td>48mW</td>
</tr>
<tr>
<td>Sampling Frequency</td>
<td>950MHz</td>
<td>640MHz</td>
<td>250MHz</td>
<td>340MHz</td>
<td>420MHz</td>
<td>640MHz</td>
<td>900MHz</td>
<td>400MHz</td>
</tr>
<tr>
<td>Technology</td>
<td>130nm CMOS</td>
<td>180nm CMOS</td>
<td>65nm CMOS</td>
<td>90nm CMOS</td>
<td>90nm CMOS</td>
<td>130nm CMOS</td>
<td>130nm CMOS</td>
<td>180nm CMOS</td>
</tr>
</tbody>
</table>

Quantizer: Process Variation Compensation

- Adjustable reference voltages
 - Quantization levels can be shifted up to 30mV
 - Do not have to be buffered
 (current-mode comparison → ref. voltages not in direct signal path)

- Example: shift of quantization level for bit 2
 - Schematic simulation with modeled pad/package parasitics
 - Nominal: transition at -153.6mV with $V_{\text{ref3}} = 150$ mV

Bit transition at -187.4mV with $V_{\text{ref3}} = 180$ mV

Bit transition at -122.5mV with $V_{\text{ref3}} = 120$ mV
Quantizer: Technology Scaling & Process Variation

Key quantizer performance differences due to design scaling:

<table>
<thead>
<tr>
<th></th>
<th>Jazz 0.18μm CMOS</th>
<th>UMC 90nm CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>+/-5mV</td>
<td>+/-7mV</td>
</tr>
<tr>
<td>(nominal corner, no jitter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static power: quantizer core</td>
<td>6.8mW</td>
<td>0.5mW</td>
</tr>
<tr>
<td>Static power: diff. amp. & latch</td>
<td>4 x 4.3mW</td>
<td>4 x 0.3mW</td>
</tr>
<tr>
<td>Layout area</td>
<td>750μm x 520μm</td>
<td>estimate: ~500μm x 500μm</td>
</tr>
<tr>
<td>(actual area for core, logic, routing)</td>
<td></td>
<td>(~1/3 of active area, but similar passive device sizes & routing)</td>
</tr>
<tr>
<td>Clock frequency</td>
<td>400MHz</td>
<td>400MHz</td>
</tr>
<tr>
<td>(7 phases with equal spacing and 50% duty cycle)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Histograms of the 1st reference level (-150mV) from Monte Carlo simulations with 100 runs:

0.18μm CMOS

90nm CMOS
Quantizer: Summary & Conclusions

• Functionality verified through measurements
 ▪ Quantizer operated within a ΣΔ ADC prototype (0.18μm CMOS technology)

• Quantization with multi-phase clocks provides a viable alternative to typical flash quantizers in ΣΔ modulators
 ▪ Optimized for combination with a single-element PWM DAC that avoids unit element mismatch problems due to process variations
 ▪ Benefits from fast-switching transistors in modern CMOS technologies
 • For the same specifications: power of 90nm design < 10% power of 0.18μm design

• Tuning “knobs” are available to compensate for PVT variations
 ▪ Quantization levels can be shifted individually via reference voltage adjustments

• A low-jitter clock source is mandatory
 ▪ < 50ps RMS period jitter is required for the standalone 3-bit quantizer operation

Thank You.