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Course Overview

e Lecture 1 — June 5, 2012
= CMOS process variation challenges
= System-level calibration trends (transceiver systems-on-a-chip examples)
= Production test simplification and cost reduction (example: loopback testing)
= Built-in testing of analog circuits

e Lecture 2 — June 6, 2012
= Digitally-assisted analog circuit design and performance tuning
= Case study: digitally-assisted linearization of operational transconductance amplifiers
= Case study: variation-aware continuous-time A2 analog-to-digital converter design

* Lecture 3—-June 7, 2012
= On-chip DC and RF power measurements with differential temperature sensors
= Case study: differential temperature sensor design
= Temperature sensors as variation monitors
= Mismatch reduction for transistors in high-frequency differential analog signal paths
= Example: mixer design with analog tuning for transistors biased in weak inversion



Reference Book

Marvin Onabajo - Jose Silva-Martinez

Analog Circuit
Design for Process

Variation-Resilient
Systems-on-a-Chip

@ Springer

* M. Onabajo and J. Silva-Martinez,
Analog Circuit Design for Process
Variation-Resilient Systems-on-a-Chip,
Springer (ISBN: 978-1-4614-2295-2).

* Includes descriptions of many concepts
and projects discussed in this course



Greetings from Northeastern University

* Location: Boston, Massachusetts, USA
* Web: www.northeastern.edu

* Student population
o . ! | = Undergraduate: ~16,000
NORTHHAS'J"F,RN UNTVERSIT) = Graduate: ~5000

= International: 15% (125 countries)

* Colleges and schools
= College of Arts, Media, and Design
= College of Business Administration
= College of Computer and Information Science!!!
= College of Engineering!!!
= Bouvé College of Health Sciences
= College of Professional Studies
= College of Science

= College of Social Sciences and Humanities
= School of Law




Electrical & Computer Eng. Graduate Program

* Programs Offered (full time & part time):
*M.S. in ECE
=Ph.D. in EE and CE

* Faculty:
=48 regular faculty members
=11 IEEE Fellows (including 2 Life Fellows)
=1 member of NAE
=7 recipients of NSF/CAREER awards

=1 recipient of Presidential Early Career Award for
Scientists and Engineers

* Looking for motivated, hard-working, and well-prepared
graduate students — www.ece.neu.edu



Concentrations and Research Programs

* Communication and Signal Processing

* Computer Engineering

* Control and Signal Processing

* Electromagnetics, Plasma, and Optics

* Electronic Circuits, Semiconductor Devices, and Micro-fabrication

* Power Systems, Power Electronics, and Motion Control



Research Centers and Institutes

* Bernard M. Gordon Center for Subsurface Sensing & Imaging Systems (CenSSIS)
* Center for Awareness and Localization of Explosive-Related Threats (ALERT)

* Center for Communication and Digital Signal Processing (CDSP)

* Northeastern University Center for Electrical Energy Research (NUCEER)

* Center for High-Rate Nanomanufacturing (CHN)

 Center for Microwave Magnetic Materials and Integrated Circuits (CM3IC)

* |nstitute for Information Assurance (l1A)

* |Institute for Complex Scientific Software (ICSS)

* Center for Ultra-wide-area Resilient Electric Energy Transmission Network (CURENT)
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Wireless Product Trends

* Support of multiple communication standards and more features
* Increasing circuit integration and system complexity per chip

* Technology optimizations for digital circuits
— Create analog design challenges

* Increasing process-voltage-temperature (PVT) variations
— Lower manufacturing yield and reduced reliability

P int with up /"“‘\
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Design Objectives

* Development of analog & mixed-signal circuits with extra features
for integration into reliable single-chip systems

=Digitally assisted analog design

= On-chip calibration to improve performance and yield
* New built-in test capabilities with on-chip measurement circuits

* “Self-healing” integrated systems

=On-chip adjustment of parameters to maintain high performance
despite of environmental changes and aging effects

=For future medical and military devices that require high reliability



The Single-Chip Transceiver as Paradigm

* “Digital intensive” System-on-Chip (SoC)

=Shrinking of transistor dimensions in complementary

metal-oxide-semiconductor (CMOS) technologies

»Process variations and interferences have more impact
on analog circuits

12

=Reduced access to internal blocks for testing

le-Chip
il Single-Chip
Transceiver

»|ncreased test cost




Process Variation Problems

Example: Intra-die threshold voltage variability vs. technology node

CMOS Techn. 250nm 180nm 130nm 90nm 65nm 45nm

o{Vy} | Vg, 4.7% 5.8% 8.2% 9.3% 10.7% 16%

* Defect densities are higher in newer technologies — lower yield
* Increased intra-die variability from device scaling & dopant fluctuations

=Yield impact on analog specifications:

Discarded Chips

Discarded Chips

Failing Devices Failing Devices (Old Technology) Failing Devices
(New Technology) (New Technology)

M. Onabajo, D. Goémez, E. Aldrete-Vidrio, J. Altet, D. Mateo, and J. Silva-Martinez, “Survey of robustness
enhancement techniques for wireless systems-on-a-chip and study of temperature as observable for process
variations,” Springer J. Electronic Testing: Theory and Applications, vol. 27, no. 3, pp. 225-240, June 2011.
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Variation-Aware Design Approaches

e Based on device corner models

= Allows for analog parameter variations

corner-based

= _eads to overdesign [1] overdesign

* Statistical design
3 0 design

Parameter 2

» Yield estimation based on
Monte Carlo simulations

» Long simulation times

Parameter 1

* Less reliance on device matching

» Random dopant fluctuations cause threshold voltage mismatch in neighboring
devices, especially below the 65nm node [2]

= On-chip variation sensing becomes more important

[1] G. G. E. Gielen, "Design methodologies and tools for circuit design in CMOS nanometer technologies," in Proc.
36th European Solid-State Device Research Conference (ESSDERC), pp. 21-32, Sept. 2006.

[2] K. Agarwal, J. Hayes, and S. Nassif, "Fast characterization of threshold voltage fluctuation in MOS devices," IEEE
Trans. Semiconductor Manufacturing, vol. 21, no. 4, pp. 526-533, Nov. 2008.



* Yields decrease as SoC integration levels increase

Larger SoC Sizes — Lower Yields

15

* Defect densities become worse with technology nodes and larger chip sizes:

Defect Density:mean & Sigma
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H. Masuda, M. Tsunozaki, T. Tsutsui, H. Nunogami, A. Uchida, and K. Tsunokuni, "A Novel Wafer-Yield PDF Model and
Verification With 90-180nm SOC Chips," IEEE Trans. Semiconductor Manuf., vol. 21, no. 4, pp. 585-591, Nov. 2008.
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Larger SoC Sizes — Lower Yields

* Manufacturing defects are more concentrated at the wafer edge
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Figures from:
H. Masuda, M. Tsunozaki, T. Tsutsui, H. Nunogami, A. Uchida, and K. Tsunokuni, "A Novel Wafer-Yield PDF Model and
Verification With 90-180nm SOC Chips," IEEE Trans. Semiconductor Manuf., vol. 21, no. 4, pp. 585-591, Nov. 2008.
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Image-Rejection Receivers

Mixer,-l Mixer,-l

X
-Path —@»%
LPF

LNA

In(frr) [1—»[> (~) Lo,
fre
KXo
Q-Path CD &

Mixer;-Q Mixer,-Q

fiF1

ADC

* Image-rejection ratio (IRR) depends on:
= |/Q amplitude mismatch (AA)
: 4
= Phase mismatch (A6) IR ~10-lo
Ree) | (46) + (AA)?

* Typical IRR performance
= Almost 60dB are required for acceptable BER performance

= Often limited to 25dB-40dB due to mismatches
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Analog 1/Q Calibration for Image-Rejection Receivers

[11 R. Montemayor and B. Razavi, "A self-calibrating 900-MHz CMOS image-reject receiver," in Proc. Eur. Solid-
State Circuits Conf. (ESSCIRC), Sept. 2000, pp. 320-323.

Mixer;-l Mixer,-l
~J fir1 fir2
I-Path %
LPF
LNA
4 Out(f
In(fxe) []_’D— LO, -|-> (fiz) »| ADC
frr Y
LPF
~| fir fir2
Mixer,-Q Mixer;-Q

&

Auxilliary Y
| fiFt f BIT Out (DC
Path X ~ ®—> = v,
Mixer, LPF Mi A‘& Option A: Vphase-mismatch

Mixer; LPF Option B: Vgain-mismatch
L01 L02

Option A: cos(2mr-fig2-t)
Option B: sin(21'r-f||=2-t)

* Analog DC voltage (V_,) can be directly used to tune the bias voltages of analog
circuits for mismatch compensation, resulting in high IRR (e.g. 57dB in [1])
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Digital 1/Q Correction Example

I. Elahi, K. Muhammad, and P. T. Balsara, "I/Q mismatch compensation using adaptive decorrelation in a low-IF
receiver in 90-nm CMOS process," IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 395-404, Feb. 2006.

430~500
MSPS 1.0833
I-channel———— e M
. g e S E?""a'»:fa ------- CHANNEL
v @ AARCF YL Nah =_Q = > SELECT |
———‘—f FILTER

ADAPTIVE
DE-
CORRELATOR

LIOISISAUOD-UMOP
pueq-8SEq 0] 4|-MO0T

'
'
cos(e, o) '
Y mt, o E
sin(es, ot + ) | E
: =t CHANNEL

—>(§)-> GH,(f) AARCF Yo .
............. COMPENSATION; FILTER

Q-channel —————» __ANALOG! |DIGITAL

* I/Q mismatch compensation follows anti-aliasing rate change filter (AARCF) in this low-
IF receiver example
= Gain mismatch appears as difference in auto-correlation between | and Q
» Phase mismatch appears as nonzero cross-correlation between | and Q

= Adaptive decorrelator drives auto-correlation and cross-correlation between | and Q outputs
towards zero by adjusting the correction coefficients:
Wine1) = Wiy + B[ Uy Uyn) — Ugen) Yo |
Wage1) = Wam) * 2 B~ Ui Ugq)
* M is the adaptation step size, which is inversely proportional to the signal energy
— periodic training sequences (preambles) are required
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Digital 1/Q Correction Example (cont.)

[. Elahi, K. Muhammad, and P. T. Balsara, "I/Q mismatch compensation using adaptive decorrelation in a low-IF
receiver in 90-nm CMOS process," IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 395-404, Feb. 2006.

Convergence of IQMC with Gear-shifting
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85 0.257 -71.6 28.05 41.7




Another Digital Receiver Calibration Example

* General calibration effectiveness
» Typical I/Q mismatch accuracy after calibration: Again < 0.1dB , Aphase < 1°
» Received constellation improvement to guarantee the specified bit error rate

» Reference:
= K.-H. Lin, H.-L. Lin, S.-M. Wang, R. C. Chang, "Implementation of digital IQ imbalance compensation
in OFDM WLAN receivers," in Proc. IEEE Intl. Symp. on Circuits and Systems, pp. 3534-3537, 2006.

64-QAM constellations with I/Q imbalance
(Aphase = 10°, Again = 20%)

A
ia;hu (R
e| el criiiinn
L w _m_w % 0% k&8
g G e
5 B e
: S|
< Gl i
e e ok ® W ow oW %
; . ; | i | | >

In-Phase

before calibration after calibration
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Loopback

Image Rejection
Filter

LNA Mixer
/X/ Analog IF
Antenna [/ N\ _’I i > (architecture- s ADC
dependent) {
N.VINE o {I
Y . \ !\, LF Loopback ,
S/ ¢ JLPLoapbacheyy e
© ¢ Attenuator ] (Test Tones) ¢ x Utise
Q0 & " ’ 9 s | Frequency HEP
Q. 3 i L] 7 ] =7
O 4 Mixer ' "
O 4 ] ]
) N t . A
L . ®
} 14 “e .\ Analog IF %
< (architecture- |« DAC |«
Power dependent)
Tty P i R
Imp;darcell\:gtlzl?ing RF Front-End Intermediate Frequency (IF) and Digital Baseband

* Dedicated test signal generation and true self-test
* System-level BER/EVM testing or local loopback
* Cannot be executed on-line

* Limited information regarding failure causes and fault locations
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Digitally Assisted Receiver Calibration

Variable Gain

. . Amplifier
I-Path Mixer Filter

»
>

ADC

Low-Noise

A
ntenna Amplifier

DAC| [DAC]

Loe >

Off-Chip
Filter

V2
DAC| [DAC|

ADC

Q-Path

Digital Signal

Processor (DSP)

Digital
calibration

Control of analog

circuit tuning

* Emerging system-level approach

= Analog tuning with digital-to-analog converters (DACs) — wide range, coarse

=Digital correction — accurate

* Focus of the presented research efforts:

= Performance adjustment features for analog circuits

=Enable system-level calibration (self-healing)
during testing and/or normal operation

higher yield
& reliability
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More Considerations: Digitally Assisted Calibration

Variable Gain
Amplifier

Mixer LP Filter
I-Path Digital Signal
Processor (DSP)
Low-Noise
Antenna Amplifier - 1/Q Calibration
- lIP2 Calibration
X Frequ.
| 0 ‘ > - DC Offset ={>[]
~ Synth. Correction
Off-Chip - Automatic Gain
RX Filter Control
- Filter Response
Q-Path Calibration

* Calibration optimization

= System-level metrics: bit error rate (BER), error vector magnitude (EVM)
=On-chip DSP: Fast Fourier Transform (FFT)

— enables determination of non-linearities

= Typical limitation: no observability for individual blocks
— unknown fault causes/locations
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Transceiver Calibration: Industry Examples

5.2-5.8GHz 802.11a WLAN transceiver (0.18um CMOS) — Athena Semiconductor

= Digital I1/Q mismatch correction
= Multiple internal loopback switches for self-calibration in test mode

» 8-bit DACs for DC offset minimization after mixers and filters

I. Vassiliou, et. al., "A single-chip digitally calibrated 5.15-5.825-GHz 0.18-um CMOS transceiver for 802.11a wireless
LAN," IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2221-2231, Dec. 2003.

2.4GHz Bluetooth radio (0.35uym CMOS) — Broadcom

= Bias networks with digital settings for LNA, mixer, filter

= Direct tuning patent (US 7,149,488 B2) with 2 RSSIs and digital block-level bias trimming

H. Darabi, et. al., "A dual-mode 802.11b/bluetooth radio in 0.35-um CMOS," Solid-State Circuits, IEEE J. Solid-State
Circuits, vol. 40, no. 3, pp. 698-706, March 2005.

2.4GHz 802.11g WLAN transceiver (0.25um CMOS) — MuChip

= Baseband I/Q gain and phase calibration

= Extra analog mixer & peak detector

Y.-H. Hsieh, et. al., "An auto-1/Q calibrated CMOS transceiver for 802.11g," IEEE J. Solid-State Circuits, vol. 40, no. 11,
pp. 2187-2192, Nov. 2005.

Single-chip GSM/WCDMA transceiver (90nm CMOS) — Freescale Semiconductor

= DC offset, I/Q gain & phase, IIP2 calibration in the digital signal processor

= 6-bit DACs for analog compensation

D. Kaczman, et. al., “A Single-Chip 10-Band WCDMA/HSDPA 4-Band GSM/EDGE SAW-less CMOS Receiver With
DigRF 3G Interface and +90 dBm 1IP2,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 718-739, March 2009.



Calibration with Enhanced Fault Coverage

1
I-Path
% 7 ADC |=| Digital Signal
Frequ. av] T Processor (DSP)
Antenna Synth. l
(VvCO) DAC DAC BER, EVM, FFT
| Y [ S S |
% ]_’D_ IE—E] A4 7 - I/Q Calibration
_ DAC DAC - IP2, IIP3 Calibration
Off-Chip I_P_D_I - DC Offset Correction
RX Filter ,;;/ l - Gain Control
N - Filter Response
Q-Path % d ADC = Control
B

* Power detectors (PDs) for built-in testing
=Block-level fault and performance identification

=ocalized analog tuning (coarse but fast)
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Conceptual Test Economics

* Characterization phase
= Design debug — comprehensive testing to obtain product specifications

* Production testing
= Screening out of faulty devices based on specified limits (pass/fail)
= Quick functionality checks with sufficient accuracy

* The commonly mentioned “Rule of Ten” for testing
» Defect detection cost increases ~10 times at each stage of the chip assembly
= Common practice: selective (sampled) verification at each stage
+ More economical

+ General need: improve test coverage at wafer test or enable recovery from
faults/variations with calibration

Incurred Cost ————»

On-Wafer Test Dici Burn-In .

icing &
(sampled: functional, = Bireic g. —»1 (reliability [~ I{:flnr:(l:![_'l'els)t — {‘ﬁ‘ssedTbh{]
structural, parametric) dtnagily stress tests) aliails ORIV




30

Conceptual Test Economics (cont.)

* Relative test cost increase

= Up to 40-50% of total cost

Capital Investment

for complex mixed-signal chips ! 19'12 1985 1988 1991 1994 1997 2000 2003 2005 2009 2012
0.1
. % 0.01 \\
* Cost reduction efforts - *\-\_
= Earlier fault detection 5 oo Bl \'\\h
7 —m— Test =
= Test time reduction R I e e
0.000001
» Sampled testing (high-yield products) Year
_ _ _ o _ Silicon Cost vs. Test Cost
* Potential savings with built-in testlng ( source: National Instruments Corp.,

»|_ess inputs/outputs — lower pin count
+ATE pin cost: $200/pin - $10,000/pin
= Minimization of wafer test time cost

http://zone.ni.com/devzone/cda/tut/p/id/2869 )

+Range: 0.03¢/sec. (digital) - 0.07¢/sec. (analog)
» Elimination of external RF measurement equipment — multi-site testing

+Parallel testing of multiple dies on wafer with digital resources



Technical Manufacturing Test Issues

* System-on-chip complexity
=Verification of all functions is impractical in production testing
= Coupling and interference effects — block-level tests less reliable

* Limited access to internal nodes
= Solutions: on-chip power detectors, multiplexed outputs (low-frequency)

* Process variations
= Necessitates tuning or calibration

= Requires: measurement/estimation of critical parameters
— analog/digital compensation

* RF test interfaces
= Sensitive to impedance matching — costly interface hardware
= Avoid RF signal capture — dedicated equipment and/or long processing times
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Conventional RF Transceiver Testing

* Block-level characterization
= Design debug & characterization test phases

* System-level verification in production
= Transmitter (TX): digital baseband input (1) — RF output capture (2)
+ Basic measures: Output power (spectrum), TX gain
= Receiver (RX): RF source (3) — digital baseband output (1)
» Basic measures: bit error rate (BER), error vector magnitude (EVM)

32
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Conventional RF Transceiver Testing (cont.)

* Common performance tests [1]

» Test selection during production testing depends on:
product / manufacturer / application

= TX/RX gain, RX noise figure, RX dynamic range, TX adjacent channel power
ratio (ACPR), RX I/Q amplitude/phase mismatch, local oscillator rejection,...

* Higher-level tests (BER, EVM) reduce test time & cost [2], [3]

» A system-level functional test can replace:
+ several lower-level tests
+ block-level characterization
»BER/EVM are affected by noise figure, 1/Q mismatch, etc.

* RF ATE cost

» RF measurements raise equipment and test development cost
= |n terms of dollars [4]:

+ Range: $100K/tester (low-speed digital) - $2M/tester (RF)

+ High-volume products can require up to 20 ATE platforms

33
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RF Transceiver Testing References

* Cited on the previous slide:

[1]
[2]

[3]
[4]

K. B. Schaub, J. Kelly, Production Testing of RF and System-on-a-Chip Devices for Wireless
Communications, Boston, MA: Artech House, 2004.

E. Lowery, “Integrated Cellular Transceivers: Challenging Traditional Test Philosophies,” Proc. of
the 28th Annual IEEE/SEMI International Electronics Manufacturing Tech. Symposium, pp. 427-436,
July 2003.

A. Halder and A. Chatterjee, “Low-Cost Alternate EVM Test for Wireless Receiver Systems,” Proc. of
the 23rd VLSI Test Symposium, pp. 255-260, May 2005.

J. Ferrario, R. Wolf, S. Moss, “Architecting Millisecond Test Solutions for Wireless Phone RFIC’s,”
Proc. of the International Test Conference, vol. 1, pp. 1325-1332, October 2003.

e Other useful sources:

[5]
[6]
[7]

8]

M. Burns, G. W. Roberts, An Introduction to Mixed-Signal IC Test and Measurement, New York, NY:
Oxford University Press, 2001.

M. Jarwala, D. Le, M. S. Heutmaker, “End-to-End Test Strategy for Wireless Systems”, Proc. of the
International Test Conference, pp. 940-946, October 1995.

M. Onabajo, F. Fernandez, J. Silva-Martinez, and E. Sanchez-Sinencio, “Strategic test cost reduction
with on-chip measurement circuitry for RF transceiver front-ends — an overview,” in Proc. 49th IEEE
Intl. Midwest Symp. on Circuits and Systems, vol. 2, pp. 643-647, Aug. 2006.

O. Eliezer, R. B. Staszewski, and D. Mannath, “A statistical approach for design and testing of
analog circuitry in low-cost SoCs.” in Proc. IEEE Intl. Midwest Symposium on Circuits and Systems
(MWSCAS), Aug. 2010, pp. 461-464.
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The Loopback Method

* System-level approach

Low-Noise
n On|y |OW_freq uency ) ~ _3’[ Amplifier  Mixer Analc;‘g — AD'!"'_‘:’-‘:'
. . ntenna architecture- igital —»|
InpUtS/OUtpUtS at pOIﬂt 1 ' r% " (dependent) Con?/erter
= Transceiver resources - -; - | vorage. N
. . oopbac igital Signa
used for RF signal generation Gircuitry ()| osittor Procossr ool
& modulation operations \
. ‘e G Analog IF or BB Digital-
» ATE calculations reduced 5 kp—v<]*%~®<— (architecture- |'- cAnalog [«
to digital comparisons €oceeocooooo | Amplifier e
Off-Chip Filtering & | ®===s<==cc=cccccacd] Pgecccccccccncccccccccnnccccccccccnns =P
Impedance Matching RF Front-End Intermediate (IF) and Baseband (BB) Frequencies

* Loopback circuitry
= Required to match the conditions of transmitter output and receiver input

* Testing algorithms
= Propositions based on BER calculations and spectral analysis (ref.: [A]-[G])

= Verified with simulations or discrete components (off-chip loopback)

* On-chip loopback has further benefits

= No high-frequency signals routed off-chip
= Potential for transceiver self-test & calibration in the field



On-Chip Loopback Implementation

Loopback Block

Switch

Attenuator Offset Mixer Switch

from _TX ’ -
chain

o —|

—

By

oo

* Basic requirements

input impedance
| matched to PA

-

= Input impedance matching

= Attenuation

= Frequency translation (if fgy # frx)
= Switches with high isolation

fotiset = frx = Frx

Offset Signal

* First switch/attenuator for loopback application [H]
= Switches optimized for compactness and insertion loss

= Fixed resistive attenuator (no tuning)

* First offset mixer [l]

= Optimized for suppression of unwanted RF mixing by-products
» Quadrature mixing — single-ended PA cannot be included in test loop
» Passive topology — max. output power -20dBm

LNA

36

to RX
chain
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Loopback References

* Cited on the previous slides:

[A]
[B]
[C]
[D]
[E]

[F]
[G]
[H]
[

M. Jarwala, D. Le, M. S. Heutmaker, “End-to-End Test Strategy for Wireless Systems”, Proc. of the
International Test Conference, pp. 940-946, October 1995.

B. R. Veillette, G. W. Roberts, “A built-in self-test strategy for wireless communication systems”, Proc. of the
International Test Conference, pp. 930-939, October 1995.

J. Dabrowski, “Loopback BIST for RF front-ends in digital transceivers”, Proc. of the Intl. Symposium for
System-on-Chip, pp. 143-146, November 2003.

D. Lupea, U. Pursche, and H.-J. Jentschel, “RF-BIST: Loopback Spectral Signature Analysis,” Proc. of the
Design, Automation, and Test in Europe Conference and Exhibition, pp. 478-483, 2003.
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Loopback Project Overview

* Proof-of-concept RF front-end

Receiver
Front-End

Parameter Value
down-conv
Tx frequency 2GHz ) pback mixer LO
: Variable
PA output power 0dBm ' Attenuator |«
“ & Offset Mixer B Rq’; ;’;fj;t
Rx frequency 2.1GHz M\ 1 signal
Sea. PA
LNA gain 21dB < \ 1 4.
JT . v \l v T RF test
. ) ransmitter :
Mixer gain 6.9dB Front-End |RMS RMS signal

* Root-mean-square (RMS) power detectors
= To measure gains and 1-dB compression points of the RF blocks
= To improve the test coverage and identification of fault locations

* Test coverage
= Project focus: front-end circuits
=|n case of a fully integrated transceiver: system-level BER
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Proposed Loopback Block: Overview

Fixed Offset Mixer
RF_IN Switch Attenuator (variable attenuation) Switch RF_OUT
(0dBm) (-10dBm to -25dBm)
from PA to LNA
50 Ohm input
* Design challenges matching A Buffer for
LO Signal
= Linearity (up to 0.7V swing at input) Lof f . = 40-200MHz
= Avoiding excessive mixer loss (Offset Signal)
= Low impedance at the LNA gate node
« This case: ~1500 Target Specifications:
+ High load-driving capability needed Parameter Value

= Minimum die area/complexity

* Reconfigurability

= Specs ensure compatibility

with multiple standards (1.9-2.4GHz)
= Offset mixing required if

fax # Trx (ex.: W-CDMA, CDMAZ2000)

Input impedance

50€2 (matched to PA)

Tx/Rx offset frequency range 40-200MHz
Attenuation range (continuous) 10-25dB
Operating frequency <2.5GHz
Tx/Rx 1solation (loopback deactivated) > 80dB

Output noise:
depends on communication standard and power level
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Input Stage: Switch/Fixed Attenuator

* Switch
= M,: low insertion loss/high linearity (large W/L ) vs. high isolation (small WI/L)
= Rg: improves linearity (1-dB comp. pt. increase: ~4dB) & high-frequency performance
= M,: ~10dB more isolation in off-state

* Fixed attenuator (R_i, R,i0)
= Decreases signal level at mixer input — relaxed mixer linearity

-------------

ime

1

,--------.-..-..-.r.z.-..-..-.r:.-..-_v: -------------------- ~
' {1dBloss Vsw ;
‘from PA R | e 3
o (0dBm) | o G ¢~ ~8dB :
T e i attenuation; .
: RFin © : H M E E :
' . H H 0
' R I ' R .. '
: r o |;M 5 att1: RF_ :
! = Vv i 2§ E = |
:Zm 50 Ohm sw Rg 5 Ratt2§to offset :
0 H .

'\ = M= mixer .
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Offset Mixing with a Switching Mixer

* Goals
= Allow single-ended input from transmitter — inclusion of PA in the loop

= Digital rail-to-rail signal can be used to provide the offset signal
(simple to generate with low-cost ATE)

= Avoid complexity — more robust

* Mixing scheme:

output components (DC removed by a blocking capacitor):

Transmitter ) A cos(0 t) + Azcos([(y)TX :':(”off]t) - A3c0s([o)TX :I:30)0ff]t) +...
(00 C0S(Orx Receiver _
(0py)  @rxT Opp = Opy

on/off switching represented with Fourier series:
7+ 2/m)cos(® ;1) - (2/3m)cos(Bm ; t) + (2/57)cos(SO 4 t) -...
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Suppression of Undesired Spectral Components

* RF feedthrough at frg;, = fx
= Appears as common-mode signal

= Attenuated by the common-mode rejection property of the differential output
stage in the mixer

= Unwanted components at the receiver input

+Located 2 2xf 4, (80-400MHz) away from desired signal
+Equal or lower power than the desired signal

*Must be suppressed according to communication standards

Periodic Steady State Response
_1g % v No_RF; pss dB28(V) desired signal

=44dEBm

—20 é removed by receiver filters for BER test{

— ] s
ﬁ—m =107dBm
s <P‘“ l ‘ ‘ -20 -15 -10 0 +10 +15 +20
oo L] L] [MHz]
B.a 2.0G 3.

freq ( Hz ) feedthrough suppression at f_ RFin

Example: W-CDMA blocker template
Output spectrum of second mixer stage

(tolerable interference at 10MHz offset is
>50dB above the desired signal)
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Offset Mixer Topology Development

* Simple single-balanced mixer =>
= Differential offset signal (LO,,)
= Problem: voltage fluctuation from switching

(at nodes x and y) v,
'II'I_o 2='I'|_o time
 Modified mixer core => Voo
= Auxiliary branch for DC stabilization
=M;=M,, M,=M,
=Reversed LO,,. LO o FOLO
. V. T +
phase in dd

NV Vo U o S o Ve Vs U o Sy o U e ULEE ]

aux. branch
RFino—|
' f,_o ' 2:I'LO 'tin;e
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Proposed Offset Mixer Topology

* 2 gain settings in the mixer core :
*R_,/R,; activated to reduce gain R
= Range: ~14dB

-

* Coupling capacitor C,
= Prevents DC operating

point changes at
nodes x/y

= Allows use of NMOS
switch instead of PMOS
(lower on-resistance
for same size/parasitics)

Output Stage |~RF

out

* Conversion gain

AR R R R R R R R R R RS E R R R R E R X L XL XN XN
4
L X R L L L T L T T T TR R T

G . ng]RL[ setting |
mix diff — Vs




Offset Mixer Output Stage

* Continuous gain tuning
»|Load transistor (M, ) is biased in triode region

. : . Variable Load
Range with Vatt,,: ~6dB (MOS in triode region)
Vdd
[ ] ] _I_
* Load-driving improvement e L .
o M jllyoattctrl
G =2 6RoN (ML) Watty i L
out 2 Ryummy Ces C.
\.,V from I—A—] —{F—o RF
* Output switch mixer core J o » L M ﬁ: i
= To disconnect loopback: Yo Ve >
. Ve o—] M, B2
Vatt,, high, Vg;/Vg, low Ve, Icp
* Common-mode attenuation of RF feedthrough
y _ 4 o gm6RON (ML)
v(©@RFin ) Ve 14286 (Tdss e

ijp

46

Vx from
mixer core
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Testchip with the Prototype Front-End

* UMC 0.13um CMOS technology

Receiver | RMS |
Front-End

* Loopback block die area #[Loopback) e
0 Variable
=0.052mm? o el
=40% of the combined PA, LNA, f "ol
and down-conversion mixer area b Nl

‘_
RF test

. Transmi r' \r '
=Roughly 1-4% overhead for a transceiver Front End signal

y

e
.
b
-

r
~
A
-
A
"“
a4




Measurement Results

Parameter Target Simulation | Measurement
Input impedance 50Q 50Q 50Q*
Tx/RX offset frequency range | 40-200MHz | 40-200MHz | 40-200MHz
Attenuation range™** 10-25dB 10.9-27.3dB| 25.8-41.5dB
Operating frequency < 2.4GHz < 2.4GHz < 2.4GHz
Tx/Rx 1solation (deactivated) > 80dB > 89dB** | > 27 4dB***

*

On-chip resistor (subject to PVT variations)

** Not accounting for RF feedthrough via substrate, mutual inductance
between bonding wires, and PCB.

*** Measurement setup does not permit verification of isolation with more

certainty. (Coupling between nearby traces on the PCB: measured isolation

between pins ranged from 30dB to 50dB)

M. Onabajo, J. Silva-Martinez, F. Fernandez, and E. Sanchez-Sinencio, “An on-chip loopback block for RF transceiver
built-in test,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 56, no. 6, pp. 444-448, June 2009.
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Measurement Results (cont.)

* Fabrication-specific comments
= Strong PVT variations

+ Gain degradation up to 10dB implied from reductions of:
- 20% for effective RF transconductances
- 10% for polysilicon resistors
(in each of the two offset mixer stages)

= Coupling losses
+ At the input attenuator
+ Capacitors in the offset mixer

* General suggestions

= Avoid MOS capacitors
(signal leakage to ground through parasitic capacitances)

= Design with ~10dB more gain in the loopback
» To provide sufficient margin for worst-case PVT conditions
» To allow 1-dB compression point testing for the LNA

49
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Measured Loopback Output Spectrum

Marker 1 [T1] RBW 10 kHz RF Att 30 g8
®Ref Lvl 39.20 dBm VBUW 10 kHz

0 dBm 2.10010020 GHz SHI 12.5 s Unit dBm

° — YilITL] -39].20 dBm
Pin 3.5dBm at 2GHz . 10010p20 GHz|

10 vZITTT] ~Z7[. 60 aBn

2.00090J100 GHz

V3aliT1l =491 B4 Bm

¢ foffset = 100MHz = 2.20050/100 GHz
=2.1GHz 3

—  lout 0
1AP

==
* 25.8dB attenuation setting (21 oW

@

e -9.9dB from buffer/cable
losses -70

* P, =-39.2dBm

out

-100
Center 2 GHz 50 MHz/ Span 500 MHz
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Tuning and Frequency-Dependence

(=]

o %
&
e 30
* Attenuation vs. RF frequency — E .
= Aattenuation = 4dB (1.9- 2.4GHz) S
E 2
* Tuning range
Control Mechanism Attenuation
Discrete setting 1 (switched resistance value) 25.8dB
Discrete setting 2 (switched resistance value) 28.6dB
Discrete setting 3 (switched resistance value) 30.2dB
Control voltage (load transistor i triode region) |+ (0dB-11.3dB)
Combined 25.8dB-41.5dB

19 2 21 2.2 23 24
RF output frequency (GHz)

5 45 ;
g .
5 35

30 -
27

25 +—— |

0.9 095 1 1.0 11

Control Voltage (V)

Continuous attenuation vs. control voltage
(P;,=-12.5dBm, fge,,+~2.1GHz)



Summary: On-Chip Loopback Method

* Application-specific design constraints for the offset mixer
= _ocation between PA and LNA
= Low-frequency digital offset signal
= Minimal complexity
— Influenced the construction of the topology

* The proposed loopback topology provides continuous attenuation
control and offset mixing for transceivers in the 1.9-2.4GHz range

* Design margin for gain discrepancies due to PVT variations is critical
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Outline — Lecture 1

* Introduction
= Course overview
= Greetings from Northeastern University

* CMOS process variation
= Trends
= |mpacts

» System-level calibration trends
» Systems-on-a-chip examples (receivers, transceivers)

* Production test simplification and cost reduction
= Example: loopback testing

* Built-in testing of analog circuits
= [ntroduction
= On-chip power detection
= RF LNA built-in testing example

53
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Analog Built-In Testing

* Goal: on-chip extraction of performance parameters
=|mproved fault coverage

frr or fi frr or fi

= Enables tuning In o » CUT » Out
S1 k I\SZ
* Benefits L’ BIT > BIT Out
DC or -
= Performance and yield improvement digital bits

= Manufacturing test time and cost reduction

* Trade-offs
= Possible loading effects on circuit under test (CUT)
=Die area requirement
= Power dissipation (particularly critical in online testing)



Built-ln Test (BIT) Approaches

* Supply current sensing
* Oscillation-based testing

* Use of on-chip peak/power/RMS detectors

* Spectral analysis (on-chip FFT in DSP)

* Analog instrumentation (e.g., on-chip analog spectrum analyzer)

— Commonality: BIT results must be correlated with specifications!
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Envisioned On-Chip Calibration Example

Analog Signal

100

75

-175
-200¢

N
Ee

: T ouT

* Based on on-chip FFT engine and
digitally tunable analog blocks

| | | | ¢ Project started at Northeastern University

cuT ADC
T DIGITAL JL i
sITA
"BAISING [T [ CALIBRATION [a—]  yxGin
\l/ 0.2 0.4 0.6 0.8 1
Time (p secs)
FFT Output _
1 + | Forlow-frequency (<50MHz) appl.
* Focus: FFT area and power minimization
1 2 3Freq ueni‘:y M szé 7 8



On-Chip Peak/Power/RMS Detectors

Pin Pout
— > CUT —>
RMS RMS

* Applications
= Built-in testing
= Received signal strength indicators (RSSIs)

* Design consideration
= Gain
=inearity (1dB compression)
= |nput impedance matching

* Often used at RF frequencies when direct
digitization of the signals is not feasible

57
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Power Detectors for RF Built-In Testing

off- : on-
chip . chip

RF
‘ Matching

Network | . :
X |

LO

— = —_—— —— —
I

. : Detector | | Detector:

: L — — — 1 R T I |

* Benefits
=On-chip block-level characterization information
= Analog local tuning loops for fast coarse calibration

=Direct RF signal measurements without DSP
(avoiding difficult high-speed digitization)
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Basic Root-Mean-Square (RMS) Detection Concept

~, /\/ AA [

VinRF — | Amplifier 9 Rectifier —9 LPF —® VouT,pC

* Desired power detector characteristics:
=High input impedance
=Small die area
= arge dynamic range

=\Wide input frequency range



Input Impedance Considerations

to Rectifier
Current | - 77 >

Amplifier

1 R;
Zin=i+ Rg + ' 14 Im
sC . SCqys 1+ SRinCip SC gs

» Z,, reduction at RF frequencies
= Due to input device capacitances
* Input transistor dimensions should be minimized
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RMS Detector Example Circuit

) Input Stage Class AB Rectifier LPF
R1
Qe =@ =
IRF M8 M10 ol
I e DCOUT
RFIN ¢ *— W—=e o

':’_”:,N11 2w M1 R4
IB2 i) .—JM—-.L

C3 e

1) B4

R2
IB1 -|-C1 M4 |:1NI5 M6 [ W12 Mt I;Mﬁ

GND

Figure from:
A. Valdes-Garcia, R. Venkatasubramanian, J. Silva-Martinez, and E. Sanchez-Sinencio, “A broadband CMOS amplitude
detector for on-chip RF measurements,” IEEE Trans. Instrum. Meas., vol. 57, no. 7, pp. 1470-1477, Jul. 2008.
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Example RMS Detector Characteristics

2
1.8
| * Conversion gain:
_ N 50mV/dBm
> 14 -
) \ ) N \\
g 1.2 L% \ :
—_ \ \ '\ . .
> ANANN * Settling time:
§_ 09GHZ -—— |\ ! » 1.9GHZ
S osf 12GHZ. — | actz 40ns
\\\\ SN e
O o0sl 1.6GHZ = |
=] A NN
) — . _
o ;X;;; * Dynamic range:
02 — 30dB
0

40 35 30 25 -20 -15 -10 -5 0 5 10
Input Power [dBm]
Measured DC output voltage vs. RF input
power at several frequencies

A. Valdes-Garcia, R. Venkatasubramanian, J. Silva-Martinez, and E. Sanchez-Sinencio, “A broadband CMOS amplitude
detector for on-chip RF measurements,” IEEE Trans. Instrum. Meas., vol. 57, no. 7, pp. 1470-1477, Jul. 2008.
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Gain & 1dB-Compression Measurements

2 1 I 1 I 1
A  RMS Det. at Input of LNA
1.8 |
B RMS Det. at Output of LNA
¥ Pin Pout
T ———{LNA
3y RMS RMS

—

RMS Detector Outputs [V]
N

Accuracy: ~1dB

o
o

0.6

Input 1dB Comp. Point: -1dBm —

04 1 I 1 1 I }
-14 12 -10 -8 -6 -4 -2 0 2 4 6 8

Input Power [dBm]

Measured response of the RF detectors at
the input and output of the LNA

A. Valdes-Garcia, R. Venkatasubramanian, J. Silva-Martinez, and E. Sanchez-Sinencio, “A broadband CMOS amplitude
detector for on-chip RF measurements,” IEEE Trans. Instrum. Meas., vol. 57, no. 7, pp. 1470-1477, Jul. 2008.




Detector Performance Examples

Reported Measurement Results:

64

Reference [1] [2] [3] [4]
Technology 0.25um BiCMOS |0.35um CMOS|0.18um CMOS | 0.18um CMOS
Area - 0.031mm? 0.06mm? -
Dynamic Range 40dB > 30dB > 25dB ~10dB
Min. Detectable Signal ~-40dBm -25dBm -15dBm 50mV
Operating Frequency 1.3GHz 0.9-24GHz 5.2GHz 2.5GHz
Power < 1TmW 8.6mW 3.5mW -

[1]

Q.Yin, W. R. Eisenstadt, R. M. Fox, and T. Zhang, “A translinear RMS detector for embedded test of RF ICs,” IEEE
Trans. Instrum. Meas., vol. 54, no. 5, pp. 1708-1714, Oct. 2005.

[2] A. Valdes-Garcia, R. Venkatasubramanian, J. Silva-Martinez, and E. Sanchez-Sinencio, “A broadband CMOS amplitude

[3]

[4]

detector for on-chip RF measurements,” IEEE Trans. Instrum. Meas., vol. 57, no. 7, pp. 1470-1477, July 2008.

H.-H. Hsieh and L.-H. Lu, “Integrated CMOS power sensors for RF BIST applications,” in Proc. IEEE VLSI Test Symp.,

May 2006, pp. 229-233.

F. Jonsson and H. Olson, “RF detector for on-chip amplitude measurements,” Electron. Letters, vol. 40, no. 20, pp.

1239-1240, June 2004.
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RF LNA Built-In Testing Example

* Input impedance measurements with on-chip power detectors
=Detection of faults in the off-chip matching network

=Suitable for final in-package/board-level test stages

off- - on-
chip . chip
Matching| :
Network | -
. Test
RS * Current™ __!__'
LT T Gument Ty ) Fover |
— . Detect
. | Generator with L2
. | Power Detector

_____ 4

X. Fan, M. Onabajo, F. O. Fernandez-Rodriguez, J. Silva-Martinez, and E. Sanchez-Sinencio, “A current injection built-
in test technique for RF low-noise amplifiers,” IEEE Trans. Circuits and Systems I. Regular Papers, vol. 55, no. 7, pp.
1794-1804, Aug. 2008.
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Current Injection Testing Theory

Thévenin-Norton transformation:

off-chip : on-chip off-chip : on-chip
<€ : > < : >
Lg X CUT, Vout Lg X CUT, vout
~N—e—+—- ESD, [—© @ ' NN ® ESD, —©
: [1/0 Pad : 1/0 Pad
R ; :
R, (M)
vin : ltest
: components utilized L
= <«— as instrumentation —»{ ~ =
: circuitry

* Voltage gain determination with sensitivity to R¢/L

= part of the test interface hardware

_r o= X I
— well-controlled variation, or: Vin = ltest (R + J(0|— )

= under test (external matching network) g _ Vout —( )( out)
— sensitivity allows fault detection R+ Ja’l— lost



68

Current Injection Test Example

: Voo * To avoid impact on impedance matching:
. : iﬁ Zsi >> 2
off-chip : on-chip test gate
< > ZL Vout
§ Vb.__”: M * Measurement with power detectors:
: 2 .
Z |ZM| = |Vout/|test|
C.C ‘6 | °

R, Ly _T'CJ_ - M,
Zgate ” L% Transimpedance gain:
: S

%Ztesté = ( wé J(\/R52+(ng)Z)(gmlzo)

+ Current

EGenerator
o °
liest

‘ZM ‘ — Vout gs
T i L 1
- \/(Rs +0Om1 CS)2 +(o(Ly + Lg) - )2
gs @ C s
Vv Z
Voltage gain estimation: |G| — [out) _ | M |
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Current Generator Circuit

Vb Voo
IB R (LNA gate) | N
R 2 C, v Lgate * Designed with:
B 1 —s -
M, - || i —1 NG
i test | - WG| >> Zgy
m -
= C J:Cl Ztest - Im/Itest =m
V, ¢ M
(onfgrsltip.)_l I': a | Power (PDm) .
Detector m * Indirect measurement of
= R, i With R, and i _
AC Ground
(Vop)
Layout area (without PD, ): 0.002mm?
. 1 1
lm Zgate + ja)C2 Zgate + ja)Cz
: = R, = m X R
ltest + ja)Cl m + ]a)Cz
* st >> Lgye @voids loading (Zi>1.1kQ for f<2.4GHz)



Post-Layout Simulation Results

Voltage-mode gain estimation:

g _rms 2 o 50

V 2 ~9,2
Gy ap = 20 log{ X /502 +(@x8.1e%) J 6
Current-mode gain estimation (error < 1dB):

4
Grap = 2010g(250 ,}’”‘—"’"s J—lOlog(SOz +(@x81e”)*)+6
m_rms

AT S22 - Gy
25 [ Gi

Simulated comparison of S,; with G, and G
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