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Agenda

● Neural Network implementations
– Pulse stream and pulse width schemes

– Epsilon chip and applications

● Neuromorphic Systems
– Integrate and Fire neurons in auditory system

– Adaptive Neuromorphic Olfaction Chip

– Cricket hair sensor

– MEMS/CMOS microphone
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Neural network implementations

● Synapse multiplies 
incoming pre-synaptic 
neural state (V

j
) by a 

synaptic weight (T
ij
).

● Synapse outputs are 
summed in each column.

● Non-linear neuron 
generates post-synaptic 
neural state (S

i
).
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Information encoded in time (#1)

● Non-exhaustive set of time coding examples
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Implementation strategy

● Encode neural states as PWM or PFM signals
– leads to a new range of circuit implementations

● Encode synaptic weights as analogue voltages
– Stored on capacitors locally at each synapse

– Refreshed from off-chip RAM

– Refresh mechanism updates each synaptic weights

RAM DAC

Address

Weight ,T ij
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Implementation in analogue VLSI

● Novel implementations inspired by biology
– Example column of synapses

T ij :analogue voltage
represents

synaptic weight

V j : a digital pulseor series
of pulses represents the
pre−synapticneural state .

Synapse column
output
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Neuron implementation

● Neuron output represented by a digital width 
modulated pulse, or a stream of digital pulses.

∫  
Vouti

Synapse column
output integrator

comparator /
pulse stream
generator

PWM

pulse stream
Neuron
output
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Pulse stream neuron

● Output duty cycle a 
non-linear (sigmoidal) 
function of the 
integrator output.
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Pulse stream neuron gain change

● Modify the slope of the transfer characteristic
– realised using phase lock loop mechanisms
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Variable gain neuron circuit

● Two diff stages provide sigmoid & gain control
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Pulse width neuron

● Simple comparator fed with a (linear) ramp.
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Pulse width neuron ramp control

● Simple comparator fed with a non-linear ramp.
– non-linear ramp generated off-chip (RAM and DAC)
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EPSILON Outline

● Edinburgh Pulse Stream 
Implementation of a 
Learning Oriented 
Network
– 120 inputs, 30 outputs

– 3600 synapses

– 18Mcps - 360Mcps

– 9.5mm x 10.1mm in 
1.5µm CMOS
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EPSILON: chip photo
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System integration

● EPSILON chips and support circuitry on a PCB
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Oxford/Alvey vowel database

● Vowel sounds from 18 female and 15 male 
speakers
– Analogue outputs from a bank of 54 band-pass filters

– Feedforward network of 54 input neurons, 27 hidden 
layer neurons and 11 output neurons

– Network trained with 2 female speakers using a 
virtual target training algorithm (similar to back 
propagation)

– Network then presented with remaining 16 female 
speakers to test generalisation performance.
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Mean square error results

● Mean square error reduced as training progresses
– Initial weight set developed on workstation

– Chip-in-loop training follows. (a) system reset.
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Generalisation performance

● EPSILON chip 
– 65%

● Workstation trained on the same data and seeded 
with 20 random weight sets achieved
– Minimum 48%

– Maximum 68%

– Mean 58%

● EPSILON comparable with workstation 
performance on this simple test
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Variations on a theme

● Simpler more “portable” synapse
– easier to port between projects and processes

– larger circuit, but much less complexity
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The dynamic current mirror

● Allows currents to be 
matched across large 
synaptic arrays.

● Synaptic weights 
represented by 
currents derived from 
simple on-chip current 
digital to analogue 
converter.

●  
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Integrate & Fire Neurons in Auditory Systems
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Information encoded in time (#2)

● EPSILON neuron model makes use of time but 
neuron model is simplistic

● Integrate and Fire neuron model is a step nearer 
the biological neuron
– Leaky integration of input current, neuron spikes 

once threshold reached

d V t 
dt

=
V t 
RC


I t 
C

V  t 
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Sound Segmentation

● Integrate and Fire neurons useful for processing 
signals that vary with time

● Analogue VLSI of an integrate and fire system to 
detect onsets and offsets in speech

● Sound segments
– 20-200 mS range

– slow c.f. aVLSI

● Lateral inteconnect
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Slowing down the I&F neuron

● I&F neuron input stage

VLDCO :0% to 0.21%
in stepsof 0.014%
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Synapse implementation

● Presynaptic spike

– Closes φ
1

– Opens φ
2

● On-chip DAC 
refreshes synaptic 
weight
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Envelope of hand
claps sound

Software onset volleys

Hardware onset volleys

Envelope of TIMIT
vowel utterance

Software onset volleys

Hardware onset volleys

Hardware onset volleys

Hardware onset volleys

Low freq.

High freq.
32 neurons

dissipation
50

dissipation
15, i / p 0.25

dissipation
50, i / p 0.5

dissipation
150, i / p 1.0
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Clap sounds: zooming in

● 50 mS of results from the I&F network in aVLSI
– A: i/p = 0.25 FS, dissipation = 10; B: i/p = 0.5 FS, 

dissipation = 20; C:  i/p = 1.0 FS, dissipation = 40
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Adaptive Neuromorphic Olfaction Chip
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Information encoded in time (#3)

● Integrate and Fire neuron model is a step nearer 
the biological neuron
– Leaky integration of input current, neuron spikes 

once threshold reached

● But synapse model used so far takes no account 
of the time of occurrence of pre- or post-synaptic 
neural firing
– several models exist of time dependent synapses
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Time dependent synapse function

● The exponential 
summing synapse

● Synapse output
– Pre-synaptic spike event 

period = 23mS, V
wt

 = 
500mV.

iBAt  = t BA e
−t
d

I BAt  =∑
n

iBA t − t n
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Spike time dependent weight adaption

● Egger et al. 1999
– Synaptic weight change based on pre and post 

synaptic spike time correlation

● Song et al. 2000
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Spike time dependent weight adaption

● Dan et al. 1992
– Synaptic weight change based on pre and post 

synaptic spike time correlation

● Gerstner et al. 1996
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Electronic nose project

● Integration of
– odour delivery mechanism

– chemical sensor array + adaptive 
– analogue interface

– neuromorphic analogue VLSI

● Neuromorphic analogue VLSI 
– integrate and fire neurons

– exponential summing synapses
– with weight adaption
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Odour delivery & adaptive interface

● Odour delivered via a 
micro-channel on top of 
chip.

● Micro-channel delivers 
odour to sensor array.

● Programmable current 
sources bias sensors.

● Set-up phase cancels 
sensor DC offsets.
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Odour sensors on chip

● Carbon black polymer 
materials deposited 
between two sensor 
electrodes.

● Exposure to gas causes 
sensor material to swell 
increasing  resistance.

● Sensor embedded with 
adaptive analogue 
interface.
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Odour sensor responses

● Responses to ethanol and toluene vapour in air
● Sensor responses distinct to each analyte
● Neuromorphic circuits extract spatio-temporal 

information from odour sensor array
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Neuromorphic architecture
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On chip weight adaption

● Weight adaption due to pre-synaptic spikes 
preceeding post-synaptic spikes (left traces)

● Weight adaption due to pre-synaptic spikes 
following post-synaptic spikes (right traces)
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Neuromorphic network response

● Principal neuron fires as a result of synchronous 
excitation by the receptor neurons.
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Neuromorphic Olfaction Chips 

● Chip #1: Sensor array
– 70 resistive sensors and offset cancellation interface

● Chip #2: Neuromorphic circuits
– 3 receptor neurons, 27 synapses and 1 principal 

neuron; learning off-chip

● Chip #3: Adaptive neuromophic olfaction chip
– On-chip chemosensor array, on-chip sensor interface 

and neuromorphic olfactory circuits with on-chip 
STDP learning.
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Adaptive Neuromorphic Olfaction 
Chip: Performance Summary

Parameter Values
Supply Voltage 5V
Area
Sensor Resistance
Sensor driving current
Sensor bandwidth < 1 Hz
Sensor DC baseline variation
Input referred DC offset

10, 10, 1000
Synaptic time constant 10 ms – 300 ms
Weight range ± 1 V
Neuron time constant 10 ms – 300 ms
Neuron spike width
Neuron refractory time period 10 ms – 300 ms

6.5mm2

10 kΩ – 200 KΩ
1 µA, 10 µA, 100 µA

± 1 V
< ±5 mV

Prog. Amplifier gains

10 µs – 1 ms
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Cricket Hair Wind Sensor
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Robot Crickets

● Robot modeling of a cricket's escape response
– Robot with artificial cercal wind sensors and neural 

model for escape response

– Can we use MEMS to make wind sensors?
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MEMS wind sensor
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MEMS/CMOS microphone
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Implement bandpass filters in MEMS
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Resonant Gate Transistor (RGT)

● Acts as a transducer for incoming acoustic signal
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Array of RGTs

● Array of RGTs implement audio bandpass filters
– Adaptive gain can be implemented by controlling 

gate bias voltage
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Manufactured MEMS bridges

● View at anchor of the 
bridge

● View at the middle of 
the bridge
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Conclusion

● Neural and neuromorphic circuits presented 
process analogue signals in time.
– Initially simply a convenience but increasingly

– static neuron and synapse models give way to time 
dependent models

● Research focused on early neuromorphic signal 
processing
– Olfaction, wind sensing and audition
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