Resilient Microprocessor Design for Dynamic Variation Tolerance

Keith A. Bowman Circuit Research Lab, Intel

keith.a.bowman@intel.com

Acknowledgements:

James Tschanz, Shih-Lien Lu, Paolo Aseron, Muhammad Khellah, Arijit Raychowdhury, Bibiche Geuskens, Carlos Tokunaga, Chris Wilkerson, Tanay Karnik, & Vivek De

June 8, 2010

UPC Seminar

Problem Statement:

- Variability is one of the primary challenges in the semiconductor industry
- Adversely impacts performance, power, yield, reliability, & time-to-market

Focus Area:

1) Resilient design for dynamic variation tolerance

Outline

- Review of Static Variations
- Resilient Microprocessor Core
- Error-Detection & Recovery Circuits
- Measurement Results
- Conclusion
- Future Research

Static Variations

- Technology trends amplify microprocessor performance & power variability
- Static Variations:
 - **Within-die impacts F_{MAX} mean & leakage median**
 - > Die-to-die impacts F_{MAX} & leakage variances
- Adaptive circuits mitigate the impact of static variations on performance & power

Outline

- Review of Static Variations
- Resilient Microprocessor Core
- Error-Detection & Recovery Circuits
- Measurement Results
- Conclusion
- Future Research

Impact of Dynamic Variations on Conventional Design

Guardbands required to ensure correct operation within the presence of dynamic variations

Resilient Design

- Operate clock frequency (F_{CLK}) based on nominal conditions
- Resilient circuits detect and correct timing errors due to infrequent dynamic variations
- Throughput and energy benefits result from mitigating guardbands

Microprocessor Features

- 32-Bit Synthesized Core
 - > Open-source RISC-style design
 - > 7-stage in-order pipeline

Modified with resilient and adaptive circuits

- 16KB Instruction & Data Caches
- PLL-Based Clock Generator

Resilient & Adaptive Circuits

- Error Detection:
 - 1) Error-detection sequential (EDS)
 - 2) Tunable replica circuit (TRC)
- Error Control Unit (ECU) for Recovery:
 - 1) Instruction replay at ¹/₂F_{CLK}
 - **2)** Multiple issue instruction replay at F_{CLK}
- Adaptive Clock Controller:
 - Adjust F_{CLK} based on recovery cycles to maximize performance during persistent variations

Errors are pipelined to write-back (WB) stage to invalidate erroneous instructions

Error-control unit (ECU) enables recovery

Adaptive clock control enables dynamic F_{CLK} change

Outline

- Review of Static Variations
- Resilient Microprocessor Core
- Error-Detection & Recovery Circuits
- Measurement Results
- Conclusion
- Future Research

Error-Detection Circuits

1) Error-Detection Sequential (EDS)

2) Tunable Replica Circuit (TRC)

K. Bowman, et al., JSSC, 2009.

Error-Detection Sequential (EDS) Trade-off: Max-Delay (t_{MAX}) vs Min-Delay (t_{MIN})

- Min-delay penalty increases by error-detection window
- Clock duty-cycle control required to maintain constant high-phase delay during low and high F_{CLK}

EDS Circuits

Double Sampling (Razor I) [1]-[3]

Razor II [4]

[1] P. Franco, et al., *VLSI Test Symp.*, 1994.
[2] M. Nicolaidis, *VLSI Test Symp.*, 1999.
[3] D. Ernst, et al., *MICRO*, 2003.

Transition Detector with Time Borrowing (TDTB) [5]

Double Sampling with Time Borrowing (DSTB) [5]

[4] S. Das, et al., *JSCC*, 2009.[5] K. Bowman, et al., *JSSC*, 2009.

Error-Detection Sequential (EDS) Implementation

- Contains additional scan-enabled latch for testing
 - > mode=0: EDS

mode

CLK

> mode=1: FF

Error-Detection Sequential (EDS)

- EDS assigned during synthesis convergence
- EDS embedded in critical paths
- EDS inserted in 12% of core sequentials

Error-Detection Circuits

1) Error-Detection Sequential (EDS)

2) Tunable Replica Circuit (TRC)

- TRC monitors critical path delays
- Non-intrusive design

J. Tschanz, et al., Symp. VLSI Circuits, 2009.

Tunable Replica Circuit (TRC)

- TRC tuned to track critical paths per pipeline stage
- TRC must always fail if any critical path fails
- TRC error initiates pipeline error recovery

EDS & TRC Overheads

Circuit Blocks	EDS	TRC
Error Detection & Accumulation Area Overhead	2.2%	0.8%
ECU & Clock Control Area Overhead	1.4%	1.4%
Min-Delay Buffer Insertion Area Overhead	0.2%	_
Total Area Overhead	3.8%	2.2%
Total Power Overhead (iso-F _{CLK} , iso-V _{CC})	0.9%	0.6%

Error-Recovery Circuits

1) Instruction Replay at ¹/₂F_{CLK}

- Clock divider generates ½F_{CLK} without PLL re-lock
- Clock high-phase delay remains unchanged

2) Multiple Issue Instruction Replay at F_{CLK}

- Does not require clock control
- Issue <u>replica instructions</u> to setup pipeline registers
- Last issue is a valid instruction

1) Error occurs on instruction I2 in EX pipeline stage

2) Invalidate errant instruction and subsequent instructions 28

3) Flush pipeline

4) Issue errant instruction N times: N-1 issues setup pipeline register values; Nth issue may change architecture state 31

4) Issue errant instruction N times: N-1 issues setup pipeline register values; Nth issue may change architecture state 32

Outline

- Review of Static Variations
- Resilient Microprocessor Core
- Error-Detection & Recovery Circuits
- Measurement Results
- Conclusion
- Future Research

Characteristics & Measurements

Technology	45nm CMOS
Die Area	13.64 mm ²
Core Area	0.39 mm ²
Core F _{MAX}	1.45GHz at 1.0V
Core Power	135mW at 1.0V

- Programs compiled from C code
- Caches and settings loaded via JTAG scan

Measured Throughput (TP) vs F_{CLK}

Measured Throughput (TP) vs F_{CLK}

36

Measured Throughput Gain vs Application

- EDS exploits path-activation differences across programs
- EDS throughput benefits range from 15% to 20%
- TRC throughput benefits remain at 12%

Measured Throughput Gain vs V_{CC}

- TRC TP gains exceed EDS TP gains at low V_{cc}
- Error-detection window determines EDS & TRC TP benefits
- Min-delay limits EDS error-detection window

Measured Average Recovery Cycles

Replay at ¹/₂F_{CLK} & Multiple Issue (MI) Replay at F_{CLK}

- Multiple issue replay:
 - ~46% reduction in average recovery cycles
 - Does not require clock control

Measured Energy vs Throughput

- TRC & EDS resilient circuits enable:
 - > 41% throughput gain at equal energy
 - > 22% energy reduction at equal throughput

- Adaptive F_{CLK} compensates for persistent variations
- Maintains optimum recovery rate for maximum throughput
- Core operates through PLL lock Jitter errors corrected 41

Outline

- Review of Static Variations
- Resilient Microprocessor Core
- Error-Detection & Recovery Circuits
- Measurement Results
- Conclusion
- Future Research

Conclusion

- Microprocessor core employs resilient circuits to mitigate dynamic variation guardbands
- Error-detection circuits:
 - > Error-detection sequential (EDS)
 - > Tunable replica circuit (TRC)
- Error-recovery circuits:
 - ➢ Instruction replay at ½F_{CLK}
 - > Multiple issue instruction replay at F_{CLK}
- Silicon measurements indicate:
 - > 41% throughput gain at iso-energy
 - > 22% energy reduction at iso-throughput
- Resilient & adaptive circuits enable the microprocessor to adjust to operating variations for maximum efficiency

References

- [1] A. Muhtaroglu, G. Taylor, and T. R. Arabi, "On-Die Droop Detector for Analog Sensing of Power Supply Noise," *IEEE J. Solid-State Circuits*, pp. 651-660, Apr. 2004.
- [2] P. Franco and E. J. McCluskey, "Delay Testing of Digital Circuits by Output Waveform Analysis," in *Proc. IEEE Intl. Test Conf.*, Oct. 1991, pp. 798-807.
- [3] P. Franco and E. J. McCluskey, "On-Line Testing of Digital Circuits," in *Proc. IEEE VLSI Test Symp*, Apr. 1994, pp. 167-173.
- [4] M. Nicolaidis, "Time Redundancy Based Soft-Error Tolerance to Rescue Nanometer Technologies," in *Proc. IEEE VLSI Test Symp.*, Apr. 1999, pp. 86-94.
- [5] D. Ernst, et al., "Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation," in *Proc. IEEE/ACM Intl. Symp. Microarchitecture (MICRO-36)*, Dec. 2003, pp. 7-18.
- [6] S. Das, et al., "A Self-Tuning DVS Processor Using Delay-Error Detection and Correction," *IEEE J. Solid-State Circuits*, pp. 792-804, Apr. 2006.
- [7] S. Das, et al., "Razor II: In Situ Error Detection and Correction for PVT and SER Tolerance," *IEEE J. Solid-State Circuits*, pp. 32-48, Jan. 2009.
- [8] K. A. Bowman, et al., "Energy-Efficient and Metastability-Immune Resilient Circuits for Dynamic Variation Tolerance," *IEEE J. Solid-State Circuits*, pp. 49-63, Jan. 2009.
- [9] J. Tschanz, et al., "Tunable Replica Circuits and Adaptive Voltage-Frequency Techniques for Dynamic Voltage, Temperature, and Aging Variation Tolerance," in *IEEE Symp. VLSI Circuits Dig. Tech. Papers*, June 2009, pp.112-113.
- [10] K. Bowman, et al., "Circuit Techniques for Dynamic Variation Tolerance," in *Proc. 46th ACM/IEEE DAC*, July 2009, pp. 4-7.
- [11] J. Tschanz, et al., "A 45nm Resilient and Adaptive Microprocessor Core for Dynamic Variation Tolerance," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2010, pp. 282-283.

Outline

- Review of Static Variations
- Resilient Microprocessor Core
- Error-Detection & Recovery Circuits
- Measurement Results
- Conclusion
- Future Research

Wide Dynamic Operation Range

Clock Frequency

- V_{MAX}: Limited by reliability or power constraints
- V_{MIN}: Limited by circuit failures

Wide Dynamic Operation Range

Clock Frequency

Resilient design expands the operating range

Wide Range of Platform Segments

Platform	Power	Perf.	Cores	Thermal	Ambient	RAS
Server	High	Very High	医安克克 全安克克	Active	Controlled	Very High
Desktop	Med	High		Fan	Controlled	High
Mobile	Low	Med		Fan or Fan-less	Uncontrolled	Med
CIM	Very Low	Low	SOC	Fan-less	Uncontrolled	Low

- Few designs must support many segments
- Resilient design to satisfy various platform targets

Future Research

- Resilient Design for Wide Operation Range:
 - Explore error-detection & recovery capabilities throughout system hierarchy
 - Optimize resilient features at the system level across unique platform segments
 - > Opportunities & challenges for validation & test
 - > Opportunities for CAD

