Resilient Microprocessor Design for Dynamic Variation Tolerance

Keith A. Bowman
Circuit Research Lab, Intel

keith.a.bowman@intel.com

Acknowledgements:
James Tschanz, Shih-Lien Lu, Paolo Aseron, Muhammad Khellah, Arijit Raychowdhury, Bibiche Geuskens, Carlos Tokunaga, Chris Wilkerson, Tanay Karnik, & Vivek De

June 8, 2010
UPC Seminar
Problem Statement:

- Variability is one of the primary challenges in the semiconductor industry
- Adversely impacts performance, power, yield, reliability, & time-to-market

Focus Area:

1) Resilient design for dynamic variation tolerance
Outline

• Review of Static Variations
• Resilient Microprocessor Core
• Error-Detection & Recovery Circuits
• Measurement Results
• Conclusion
• Future Research
Static Variations

- Technology trends amplify microprocessor performance & power variability

- Static Variations:
 - Within-die impacts F_{MAX} mean & leakage median
 - Die-to-die impacts F_{MAX} & leakage variances

- Adaptive circuits mitigate the impact of static variations on performance & power
Outline

- Review of Static Variations
- Resilient Microprocessor Core
- Error-Detection & Recovery Circuits
- Measurement Results
- Conclusion
- Future Research
Dynamic Variations

V_{CC} Droop

![Graph showing V_{CC} droop over time](image)

Temperature

![Heat map showing temperature variations](image)

Aging

![Graph showing path delay change over stress time](image)
Impact of Dynamic Variations on Conventional Design

Guardbands required to ensure correct operation within the presence of dynamic variations
Resilient Design

- Operate clock frequency (F_{CLK}) based on nominal conditions
- Resilient circuits detect and correct timing errors due to infrequent dynamic variations
- Throughput and energy benefits result from mitigating guardbands
Microprocessor Features

- 32-Bit Synthesized Core
 - Open-source RISC-style design
 - 7-stage in-order pipeline
 - Modified with resilient and adaptive circuits

- 16KB Instruction & Data Caches

- PLL-Based Clock Generator
Resilient & Adaptive Circuits

• Error Detection:
 1) Error-detection sequential (EDS)
 2) Tunable replica circuit (TRC)

• Error Control Unit (ECU) for Recovery:
 1) Instruction replay at $\frac{1}{2}F_{\text{CLK}}$
 2) Multiple issue instruction replay at F_{CLK}

• Adaptive Clock Controller:
 ➢ Adjust F_{CLK} based on recovery cycles to maximize performance during persistent variations
Microprocessor Core Overview

refclk \rightarrow \text{PLL} \rightarrow \frac{1}{2}F_{CLK} \rightarrow \text{Duty Cycle}

16KB I$ \rightarrow \text{PC} \rightarrow \text{IF} \rightarrow \text{DE} \rightarrow \text{RA} \rightarrow \text{EX} \rightarrow \text{MEM} \rightarrow \text{X} \rightarrow \text{WB} \rightarrow \text{RF}

16KB D$
Microprocessor Core Overview

Errors are pipelined to write-back (WB) stage to invalidate erroneous instructions
Microprocessor Core Overview

- Error-control unit (ECU) enables recovery
Adaptive clock control enables dynamic F_{CLK} change
Outline

• Review of Static Variations
• Resilient Microprocessor Core
• Error-Detection & Recovery Circuits
• Measurement Results
• Conclusion
• Future Research
Error-Detection Circuits

1) Error-Detection Sequential (EDS)

2) Tunable Replica Circuit (TRC)
Error-Detection Sequential (EDS)

- Detect timing error within error-detection window

Error-Detection Sequential (EDS)

Trade-off: Max-Delay (t_{MAX}) vs Min-Delay (t_{MIN})

- Min-delay penalty increases by error-detection window
- Clock duty-cycle control required to maintain constant high-phase delay during low and high F_{CLK}
EDS Circuits

Double Sampling (Razor I) [1]-[3]

Transition Detector with Time Borrowing (TDTB) [5]

Razor II [4]

Double Sampling with Time Borrowing (DSTB) [5]

Error-Detection Sequential (EDS)

Implementation

- Contains additional scan-enabled latch for testing
 - mode=0: EDS
 - mode=1: FF
Error-Detection Sequential (EDS)

- EDS assigned during synthesis convergence
- EDS embedded in critical paths
- EDS inserted in 12% of core sequentials
Error-Detection Circuits

1) Error-Detection Sequential (EDS)

2) Tunable Replica Circuit (TRC)
Tunable Replica Circuit (TRC)

- TRC monitors critical path delays
- Non-intrusive design

Tunable Replica Circuit (TRC)

- TRC tuned to track critical paths per pipeline stage
- TRC must always fail if any critical path fails
- TRC error initiates pipeline error recovery
EDS & TRC Overheads

<table>
<thead>
<tr>
<th>Circuit Blocks</th>
<th>EDS</th>
<th>TRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Detection & Accumulation Area Overhead</td>
<td>2.2%</td>
<td>0.8%</td>
</tr>
<tr>
<td>ECU & Clock Control Area Overhead</td>
<td>1.4%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Min-Delay Buffer Insertion Area Overhead</td>
<td>0.2%</td>
<td>-</td>
</tr>
<tr>
<td>Total Area Overhead</td>
<td>3.8%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Total Power Overhead (\text{(iso-F}{\text{CLK}}, \text{iso-V}{\text{CC}}))</td>
<td>0.9%</td>
<td>0.6%</td>
</tr>
</tbody>
</table>
Error-Recovery Circuits

1) Instruction Replay at $\frac{1}{2}F_{CLK}$
 - Clock divider generates $\frac{1}{2}F_{CLK}$ without PLL re-lock
 - Clock high-phase delay remains unchanged

2) Multiple Issue Instruction Replay at F_{CLK}
 - Does not require clock control
 - Issue *replica instructions* to setup pipeline registers
 - Last issue is a valid instruction
Multiple Issue (MI) Replay

<table>
<thead>
<tr>
<th>Pipeline Stage</th>
<th>IF</th>
<th>DE</th>
<th>RA</th>
<th>EX</th>
<th>MEM</th>
<th>X</th>
<th>WB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I1</td>
<td>I1</td>
<td>I1</td>
<td>I1</td>
<td>I1</td>
<td>I1</td>
<td>I2</td>
</tr>
<tr>
<td></td>
<td>I2</td>
<td>I2</td>
<td>I2</td>
<td>I2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I3</td>
<td>I3</td>
<td>I3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I4</td>
<td>I4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clock Cycle

1. Error occurs on instruction I2 in EX pipeline stage

I2 Error in EX Stage

1) Error occurs on instruction I2 in EX pipeline stage
Multiple Issue (MI) Replay

<table>
<thead>
<tr>
<th>Pipeline Stage</th>
<th>Clock Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>IF</td>
<td>I1 I2 I3 I4 I5 I6 I7 I8</td>
</tr>
<tr>
<td>DE</td>
<td>I1 I2 I3 I4 I5 I6 I7 I8</td>
</tr>
<tr>
<td>RA</td>
<td>I1 I2 I3 I4 I5 I6 I7 I8</td>
</tr>
<tr>
<td>EX</td>
<td>I1 I2 I3 I4 I5 I6 I7 I8</td>
</tr>
<tr>
<td>MEM</td>
<td>I1 I2 I3 I4 I5 I6 I7 I8</td>
</tr>
<tr>
<td>X</td>
<td>I1 I2 I3 I4 I5 I6 I7 I8</td>
</tr>
<tr>
<td>WB</td>
<td>I1 I2 I3 I4 I5 I6 I7 I8</td>
</tr>
</tbody>
</table>

I2 Error in EX Stage

Invalid: Does Not Affect Architecture State

2) Invalidate errant instruction and subsequent instructions
Multiple Issue (MI) Replay

Clock Cycle

<table>
<thead>
<tr>
<th>Pipeline Stage</th>
<th>IF</th>
<th>DE</th>
<th>RA</th>
<th>EX</th>
<th>MEM</th>
<th>X</th>
<th>WB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I1</td>
<td>I1</td>
<td>I1</td>
<td>I1</td>
<td>I1</td>
<td>I1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>I2</td>
<td>I2</td>
<td>I2</td>
<td>I2</td>
<td>I2</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>I3</td>
<td>I3</td>
<td>I3</td>
<td>I3</td>
<td>I3</td>
<td>I3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>I5</td>
<td>I5</td>
<td>I5</td>
<td>I5</td>
<td>I5</td>
<td>I5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>I6</td>
<td>I6</td>
<td>I6</td>
<td>I6</td>
<td>I6</td>
<td>I6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>I7</td>
<td>I7</td>
<td>I7</td>
<td>I7</td>
<td>I7</td>
<td>I7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>I8</td>
<td>I8</td>
<td>I8</td>
<td>I8</td>
<td>I8</td>
<td>I8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- **I2 Error in EX Stage**
- **Invalid: Does Not Affect Architecture State**

3) Flush pipeline
Multiple Issue (MI) Replay

Clock Cycle

<table>
<thead>
<tr>
<th>Clock Cycle</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
</table>

Pipeline Stage

<table>
<thead>
<tr>
<th>IF</th>
<th>DE</th>
<th>RA</th>
<th>EX</th>
<th>MEM</th>
<th>X</th>
<th>WB</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- **Invalid**: Clocks 17 and 18
- **Pipeline Flush**: Clocks 17, 18, 19, and 20
Multiple Issue (MI) Replay

4) Issue errant instruction N times: N-1 issues setup pipeline register values; Nth issue may change architecture state.
4) Issue errant instruction N times: N-1 issues setup pipeline register values; Nth issue may change architecture state
Answer: An outline is shown with the following sections:

- Review of Static Variations
- Resilient Microprocessor Core
- Error-Detection & Recovery Circuits
- Measurement Results
- Conclusion
- Future Research
Characteristics & Measurements

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>45nm CMOS</td>
</tr>
<tr>
<td>Die Area</td>
<td>13.64 mm²</td>
</tr>
<tr>
<td>Core Area</td>
<td>0.39 mm²</td>
</tr>
<tr>
<td>Core F_{MAX}</td>
<td>1.45GHz at 1.0V</td>
</tr>
<tr>
<td>Core Power</td>
<td>135mW at 1.0V</td>
</tr>
</tbody>
</table>

- Programs compiled from C code
- Caches and settings loaded via JTAG scan
Measured Throughput (TP) vs F_{CLK}

- 16% TP gain with EDS

![Graph showing Measured Throughput (TP) vs Clock Frequency (F_{CLK}). The graph illustrates the normalized throughput and recovery cycles (%) in relation to clock frequency. The Resilient: EDS Max TP and Conventional Max TP are highlighted, with a significant gain at $V_{CC} = 1.0V$ and 10% V_{CC} droop. The figure also indicates that EDS leads to a 16% TP gain.]
Measured Throughput (TP) vs F_{CLK}

- **Normalized Throughput**

- **Recovery Cycles (%)**

- **Clock Frequency (GHz)**

- **Conventional Max TP**

- **Resilient: EDS Max TP**

- **Resilient: TRC Max TP**

- **V_{CC}=1.0V 10% V_{CC} Droop**

- **16% TP gain with EDS**

- **12% TP gain with TRC**
EDS exploits path-activation differences across programs

- EDS throughput benefits range from 15% to 20%
- TRC throughput benefits remain at 12%
TRC TP gains exceed EDS TP gains at low V_{CC}

Error-detection window determines EDS & TRC TP benefits

Min-delay limits EDS error-detection window
Measured Average Recovery Cycles

Replay at $\frac{1}{2}F_{CLK}$ & Multiple Issue (MI) Replay at F_{CLK}

- Multiple issue replay:
 - ~46% reduction in average recovery cycles
 - Does not require clock control
TRC & EDS resilient circuits enable:

- 41% throughput gain at equal energy
- 22% energy reduction at equal throughput
Adaptive Clock Control Measurement

- Adaptive F_{CLK} compensates for persistent variations
- Maintains optimum recovery rate for maximum throughput
- Core operates through PLL lock – Jitter errors corrected
Outline

• Review of Static Variations
• Resilient Microprocessor Core
• Error-Detection & Recovery Circuits
• Measurement Results
• Conclusion
• Future Research
Conclusion

- Microprocessor core employs resilient circuits to mitigate dynamic variation guardbands

- Error-detection circuits:
 - Error-detection sequential (EDS)
 - Tunable replica circuit (TRC)

- Error-recovery circuits:
 - Instruction replay at $\frac{1}{2}F_{CLK}$
 - Multiple issue instruction replay at F_{CLK}

- Silicon measurements indicate:
 - 41% throughput gain at iso-energy
 - 22% energy reduction at iso-throughput

- Resilient & adaptive circuits enable the microprocessor to adjust to operating variations for maximum efficiency
References

Outline

- Review of Static Variations
- Resilient Microprocessor Core
- Error-Detection & Recovery Circuits
- Measurement Results
- Conclusion
- Future Research
Wide Dynamic Operation Range

- V_{MAX}: Limited by reliability or power constraints
- V_{MIN}: Limited by circuit failures
Resilient design expands the operating range.
Wide Range of Platform Segments

<table>
<thead>
<tr>
<th>Platform</th>
<th>Power</th>
<th>Perf.</th>
<th>Cores</th>
<th>Thermal</th>
<th>Ambient</th>
<th>RAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>High</td>
<td>Very High</td>
<td>Active</td>
<td>Controlled</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>Desktop</td>
<td>Med</td>
<td>High</td>
<td>Fan</td>
<td>Controlled</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>Low</td>
<td>Med</td>
<td>Fan or Fan-less</td>
<td>Uncontrolled</td>
<td>Med</td>
<td></td>
</tr>
<tr>
<td>MID</td>
<td>Very Low</td>
<td>Low</td>
<td>SOC</td>
<td>Fan-less</td>
<td>Uncontrolled</td>
<td>Low</td>
</tr>
</tbody>
</table>

- Few designs must support many segments
- Resilient design to satisfy various platform targets
Future Research

- Resilient Design for Wide Operation Range:
 - Explore error-detection & recovery capabilities throughout system hierarchy
 - Optimize resilient features at the system level across unique platform segments
 - Opportunities & challenges for validation & test
 - Opportunities for CAD
Q&A