Variability in Microprocessor Logic Design: Trends, Sources, Consequences, & Solutions

Keith A. Bowman Circuit Research Lab, Intel

keith.a.bowman@intel.com

Acknowledgements: Jim Tschanz, Vivek De, Tanay Karnik, and Steve Duvall

June 7, 2010

UPC Seminar

Problem Statement:

- Variability is one of the primary challenges in the semiconductor industry
- Adversely impacts performance, power, yield, reliability, & time-to-market

Focus Areas:

- 1) Impact of variations on logic design
- 2) Variation-tolerant circuits
- 3) Tomorrow: Resilient microprocessor design for dynamic variation tolerance

Outline

- Motivation & Technology Trends
- Sources of Variability
- Static Variations:
 - Impact on Logic Design
 - Variation-Tolerant Circuits
- Dynamic Variations:
 - Impact on Logic Design
 - Variation-Tolerant Circuits
- Summary

- Microprocessors with multi-billion transistors...
- Trillion instructions per second performance...
- Constant power envelope...
- ✓ Lower costs…

Challenge: Variations

Gate length control is one of the "grand challenges" in the semiconductor industry – ITRS, 2009

Cost of Variations

Overestimating Variations

- Increases design time
- Larger power & die size
- Rejection of otherwise good design options
- Missed market windows
- Impacts design

Underestimating Variations

- Functional yield loss
- Performance reduction
- Increases silicon debug time

Impacts manufacturing

Impact of Variations on Revenue

Impact of Variations on Revenue

Revenue exponentially increases across FMAX bins

Technology Outlook

Year	2008	2010	2012	2014	2016	2018
Technology Node (nm)	45	32	22	16	11	8
Bulk Planar CMOS	High Probability			Low Probability		
Alternative Device (3G)	Low Probability High Probability				ability	
Variability	Mediu	m	Hi	igh	Very	y High

Gate Overdrive Degradation

Gate overdrive reduction amplifies impact of V_{CC}, V_T, & L variations on drive current

Strategic Research Objective

Design Reliable Systems with Unreliable Components

Outline

- Motivation & Technology Trends
- Sources of Variability
 - Static Variations:
 - Impact on Logic Design
 - Variation-Tolerant Circuits
 - Dynamic Variations:
 - Impact on Logic Design
 - Variation-Tolerant Circuits
 - Summary

Sources of Variability

1) Static Process Variations

2) Dynamic Operational Variations

3) Simulation Tool Uncertainty

Scale of Variations

Die-to-Die (D2D) Variations

Within-Die (WID) Variations

Systematic F

Wafer Scale

Die Scale

Feature Scale

Static Variations

Gate Length Variation

Die-to-Die Variation

 Examples: Processing temperatures, equipment properties, polishing, die placement, resist thickness

Systematic Within-Die Variation

• Examples: Lens aberrations, mid-range flare, stepper non-uniformities, scanner overlay control, multiple dies per reticle, wafer topography

Random Within-Die Variation

• Examples: Patterning limitations, shortrange flare, line edge roughness

Source: Nagib Hakim

Systematic-WID Variation

Source: H. Masuda, et al., CICC, 2005.

From circuit design perspective, systematic-WID variation behaves as a correlated random-WID variation

Gate Length Variation Trends

- Total CD control approximately fixed percentage of nominal gate length
- Random-WID variations increase with scaling

Systematic-WID Correlation Length

Correlation length scaling by ~1/sqrt(2)

Random Dopant Fluctuation

Interconnect Variations

1) Depth of Focus Variation

Depends on neighboring interconnects

2) Chemical Mechanical Polishing (CMP)

Depends on metal density

3) Etching

Smaller than depth of focus & CMP variations

Impact of OPC on Isolated Lines

Bossung Plot Example (Isolated Drawn Lines)

Dynamic Variations

Supply Voltage Variations

Temperature Variations

Single Core

Dual Core

Hamann et. al, ITHERM, 2006.

Processor activity & ambient change Demonsion 400

> Dynamic: 100 – 1000μs

Transistor Aging

> NMOS & PMOS threshold voltages degrade from bias & temperature stress

J. Tschanz, et al., Symp. VLSI Circuits, 2009.

Additional Dynamic Variations

Cross-Coupling Capacitance

Multiple-Input Switching

Outline

- Motivation & Technology Trends
- Sources of Variability
- Static Variations:
 - Impact on Logic Design
 - Variation-Tolerant Circuits
 - Dynamic Variations:
 - Impact on Logic Design
 - Variation-Tolerant Circuits
 - Summary

K. Bowman, et al., *JSSC*, 2002.

Impact of WID Variations on Delay

Impact of Variations on Delay

FMAX Distribution Model Validation Density 1.0E+00 **Measured Data** Model Probability 1.0E-02 1.0E-04 Vormalized 1.0E-06 1.0E-08 2 3 -3 -2 -1 0 Δ -4 1

Number of FMAX Standard Deviations

Model agrees closely with measured data from a 0.25μm microprocessor in mean, variance, & shape

> No fitting parameters used in the comparison K. Bowman, et al., JSSC, 2002.

Impact of Variations on FMAX

WID variations impact FMAX mean

D2D variations impact FMAX variance

Impact of Variations on Logic Depth Critical Path

Systematic-WID Variations (ρ **=1)**

$$\frac{\sigma_{\mathsf{T}_{\mathsf{CP}}}}{\mathsf{T}_{\mathsf{CP}}} = \frac{\mathsf{N}\sigma_{\mathsf{T}_{\mathsf{GATE}}}}{\mathsf{N}\mathsf{T}_{\mathsf{GATE}}} = \frac{\sigma_{\mathsf{T}_{\mathsf{GATE}}}}{\mathsf{T}_{\mathsf{GATE}}}$$

Random-WID Variations

$\sigma_{T_{CP}}$	$\underline{-} \sqrt{N\sigma_{T_{GATE}}}$	_ 1	$\sigma_{T_{GATE}}$
T _{CP}	NT _{GATE}	_ √N	T _{GATE}

Random-WID variations average across N stages

K. Bowman, et al., JSSC, 2002.

Impact of Variations on Logic Depth

Impact of random-WID variation increases with deeper pipelining

Impact of systematic-WID variation insensitive to pipelining 36

Impact of Variations on Leakage

Static Variation Compensation

> Measure:

- Clock Frequency
- Power

Control Knobs:

- Supply Voltage
- Body Bias

Body Bias Review

Reverse body bias (RBB)

- **PMOS**: **V**_{BP} > **V**_{DD}
- NMOS: V_{BN} < V_{SS}
- V_T increases (I_{ON}, I_{OFF} reduce)

- > Forward body bias (FBB)
 - **PMOS**: **V**_{BP} < **V**_{DD}
 - NMOS: V_{BN} > V_{SS}
 - V_T reduces (I_{ON}, I_{OFF} increase)

Adaptive V_{CC} & Body Bias

Reduce Impact of D2D Variations

Adaptive Supply Voltage

Effectiveness of Adaptive Biasing

Effectiveness of Adaptive Biasing

Slower Parts (Lower Power)

- Leakage is a small percentage of total power
- Trade-off leakage increase for performance gain
- More effective to apply a forward body bias (FBB)

Faster Parts (Higher Power)

- Active & leakage contribute significantly to total power
- V_{CC} reduction lowers both active and leakage power
- More effective to reduce V_{CC}

Static ABB for WID Variations

WID ABB Concept

WID ABB Effectiveness

150nm Technology Test-Chip

J. Tschanz, et al., JSSC, 2003.

- No body bias for clock
- Requires triple-well process

Outline

- Motivation & Technology Trends
- Sources of Variability
- Static Variations:
 - Impact on Logic Design
 - Variation-Tolerant Circuits
- Dynamic Variations:
 - Impact on Logic Design
 - Variation-Tolerant Circuits
 - Summary

Impact of Dynamic Variations on Conventional Design

Guardbands required to ensure correct operation within the presence of dynamic variations

Sensors with Dynamic Voltage & Frequency (DVF) Control

Detect temperature, V_{CC}, & aging variations

Adapt F_{CLK} & V_{CC} to avoid timing violations

T. Fisher, et al., *JSSC*, 2006. R. McGowen, et al., *JSSC*, 2006. J. Tschanz, et al., ISSCC, 2007.

Adaptive F_{CLK} & body bias ensures correct operation & lower leakage at higher temperatures

J. Tschanz, et al., ISSCC, 2007.

Power Sensor with DVF

Power management scheme increases performance within a power & thermal envelope

T. Fisher, et al., *JSSC*, 2006. R. McGowen, et al., *JSSC*, 2006.

Power Sensor with DVF

Dynamic adaptation to reduce power variation

T. Fisher, et al., *JSSC*, 2006. R. McGowen, et al., *JSSC*, 2006.

Sensors with Dynamic Voltage & Frequency (DVF) Control

Advantages:

- Reduces guardbands for slow-changing global dynamic variations
- ✓ Low design overhead

Disadvantages:

- Cannot detect fast-changing or local dynamic variations
- Requires post-silicon calibration

Summary

- Technology trends amplify microprocessor performance & power variability
- Static Variations:
 - **>** Within-die impacts F_{MAX} mean & leakage median
 - > Die-to-die impacts F_{MAX} & leakage variances
- Dynamic Variations:
 - Impact F_{CLK} guardbands
- Variation-tolerant circuits mitigate the impact of variations on performance & power

References (1)

- [1] S. G. Duvall, "Statistical Circuit Modeling and Optimization," in 5th Intl. Workshop Statistical Metrology, June 2000, pp. 56-63.
- [2] K. A. Bowman, S. G. Duvall, and J. D. Meindl, "Impact of Die-to-Die and Within-Die Parameter Fluctuations on the Maximum Clock Frequency Distribution for Gigascale Integration," IEEE J. Solid-State Circuits, pp. 183-190, Feb. 2002.
- [3] S. Borkar, et al., "Parameter Variations and Impact on Circuits and Microarchitecture," in Proc. 2003 Design Automation Conf. (DAC), June 2003, pp. 338-342.
- [4] H. Masuda, S. Ohkawa, A. Kurokawa, and M. Aoki, "Challenge: Variability Characterization and Modeling for 65- to 90-nm Processes," in IEEE Custom Integrated Circuits Conf. (CICC), Sept. 2005, pp. 593-600.
- [5] Y. Abulafia and A. Kornfeld, "Estimation of FMAX and ISB in Microprocessors," IEEE Trans. VLSI Syst., pp. 1205–1209, Oct. 2005.
- [6] S. M. Burns, M. Ketkar, N. Menezes, K. A. Bowman, J. W. Tschanz, and V. De, "Comparative Analysis of Conventional and Statistical Design Techniques," in Proceedings of the 44th ACM/IEEE Design Automation Conference (DAC), June 2007, pp. 238-243.
- [7] K. A. Bowman, A. R. Alameldeen, S. T. Srinivasan, and C. B. Wilkerson, "Impact of Die-to-Die and Within-Die Parameter Variations on the Clock Frequency and Throughput of Multi-Core Processors," IEEE Trans. VLSI Syst., pp. 1679-1690, Dec. 2009...
- [8] S. Herbert and D. Marculescu, "Characterizing Chip-Multiprocessor Variability-Tolerance," in Proc. 2008 Design Automation Conf. (DAC), June 2008, pp. 313-318.
- [9] J. Tschanz, et al., "Adaptive Body Bias for Reducing Impacts of Die-to-Die and Within-Die Parameter Variations on Microprocessor Frequency and Leakage," IEEE J. Solid-State Circuits, pp. 1396-1402, Nov. 2002.
- [10] J. Tschanz, S. Narendra, R. Nair, and V. De, "Effectiveness of Adaptive Supply Voltage and Body Bias for Reducing Impact of Parameter Variations in Low Power and High Performance Microprocessors," IEEE J. Solid-State Circuits, pp. 826-829, May 2003.
- [11] K. Bowman, J. Tschanz, M. Khellah, M. Ghoneima, Y. Ismail, and V. De, "Time-Borrowing Multi-Cycle On-Chip Interconnects for Delay Variation Tolerance," in *Proceedings of the 2006 International Symposium on* Low Power Electronics and Design (ISLPED), Oct. 2006, pp. 79-84. 53

References (2)

- [12] S. Dighe, et al., "Within-Die Variation-Aware Dynamic-Voltage-Frequency Scaling Core Mapping and Thread Hopping for an 80-Core Processor," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2010, pp. 174-175.
- [13] A. Muhtaroglu, G. Taylor, and T. R. Arabi, "On-Die Droop Detector for Analog Sensing of Power Supply Noise," *IEEE J. Solid-State Circuits*, pp. 651-660, Apr. 2004.
- [14] T. Fischer, J. Desai, B. Doyle, S. Naffziger, and B. Patella, "A 90-nm Variable Frequency Clock System for a Power-Managed Itanium Architecture Processor," *IEEE J. Solid-State Circuits*, pp. 218-228, Jan. 2006.
- [15] R. McGowen, et al., "Power and Temperature Control on a 90-nm Itanium Family Processor," *IEEE J. Solid-State Circuits*, pp. 229-237, Jan. 2006.
- [16] J. Tschanz, et al., "Adaptive Frequency and Biasing Techniques for Tolerance to Dynamic Temperature-Voltage Variations and Aging," in *IEEE ISSCC Dig. Tech. Papers*, Feb. 2007, pp. 292-293.

