

RF Transmitter based on Frequency Synthesizer

F. Badets 2010, May 26th

STMicroelectronics

Outline

Introduction

- Transmitter integration challenges
- Frequency Synthesizer Modulation
 - Translationnal TX loop
 - Modulation of sigma delta frequency synthesizer
 - Two point modulation
- DDS and ILO based RF transmitter
 - Injection Locked Oscillator
 - 400 MHz DDS
 - Bluetooth DDS/ILO based transmitter

I Q based RF transmitter

General expression of signal to be transmitted

 $\mathsf{RF}(\mathsf{t}) = A(t)\cos(\omega t + \varphi(t)) = A(t)\cos(\varphi(t))\cos(\omega t) - A(t)\sin(\varphi(t))\sin(\omega t)$

 $\mathsf{RF(t)} = I(t)\cos(\omega t) - Q(t)\sin(\omega t)$

- Principle :
 - Generation of I and Q in baseband
 - Generation of RF signal using in phase and quadrature Local Oscillator

Heterodyne Transmitter Architecture LPF I(n) IF Image Linear Filter Filter 0° IF LO ► PA ▶In 90° LPF Qn **RFLO**

Drawbacks : - needs one external high Q RF filter

- Precision needed on IF image rejection mixer
- 2 LOs : 2 PLLs
- Linear PA : Power hungry

Homodyne Transmitter(1)

Architecture :

- Zero IF -> eliminates a filter
- IQ modulator shifts the spectrum of baseband

signal directly to the Rf carrier frequency

Homodyne Transmiter(2)

Mixers :

- act as switches (lower noise)
- work better when quickly switched
- -> responsible for genration of odd harmonics
- non linearity -> intermodulation products

Homodyne Transmitter(3)

Mismatches:

- DC at mixer input -> LO leakage
- Phase and amplitude mismatch ->degrades

orthogonality: IQ leakage

- need feedback or calibration to counteract mismatches

Homodyne Transmitter(4)

- DAC: generates white noise over fs/2 bandwidth
 - $\Sigma\!\Delta$: quantization noise pushed towards fs/2
- output : NRZ like signal -> alias signal at each fs harmonics. (upsampling or precompensation)
 - INL, DNL -> distortion

Homodyne Transmitter(5)

LO and quadrature:

- LO : twice RF frequency -> minimizing pulling
- quadrature obtained using both rising and falling

edge of a divider by 2.

LO and quadrature:

 any imbalance in LO rising and falling edge timing degrades LO I&Q generations -> loss of orthogonality

Homodyne Transmitter(7)

LO pulling:

- PA leakage could lock by injection the LO (substate noise, power supply, modulation of LO load impedance).

- LO tracks the PA modulation especially outside PLL badnwidth. -> corrupted signal at output

Homodyne Transmitter(8)

PA and all others drivers:

- must preserve enveloppe -> spectral regrowth
- should be linear -> PA inefficient (40% at peak output power)
- high DC power
- power control

 RF transmission using a phase and an amplitude phase

$$\begin{aligned} \mathsf{RF}(t) &= \mathsf{I}(t)\cos(\omega_{\mathsf{RF}}t) + \mathsf{Q}(t).\sin(\omega_{\mathsf{RF}}t) \\ \mathsf{RF}(t) &= \mathsf{A}(t)\cos(\omega_{\mathsf{RF}}t + \phi(t)) \\ \mathsf{A}(t) &= \sqrt{\mathsf{I}(t)^2 + \mathsf{Q}(t)^2} \\ \phi(t) &= \arctan(\frac{\mathsf{Q}(t)}{\mathsf{I}(t)}) \end{aligned}$$

Polar Transmitter (2)

Principle :ls -l

- Generation of A and ϕ in baseband
- A modulate the power supply of a saturated PA (good efficiency
- Φ is provided at RF using PLL modulation

Polar Transmitter (3)

PA:

- Better efficiency obtained with saturated PA (> 60 %)
- Modulation through a DC/DC converter -> efficiency depends on switching frequency (noise, AM bandwidth)
- -Distortion for low supply voltages
- needsof predistortion or feedback correction

Polar Transmitter (4)

Phase and amplitude combination:

- To be effective, amplitude and phase modulations should arrive in the same time.

- The phase modulator using modulated PLL brings group delay -> to be compensated

Polar Transmitter (5)

Outline

- Introduction
 - Transmitter integration challenges

Frequency Synthesizer Modulation

- Translationnal TX loop
- Modulation of sigma delta frequency synthesizer
- Two point modulation
- DDS and ILO based RF transmitter
 - Injection Locked Oscillator
 - 400 MHz DDS
 - Bluetooth DDS/ILO based transmitter

Offset PLL based Transmitter

STMicroelectronics

Outline

- Introduction
 - Transmitter integration challenges
- Frequency Synthesizer Modulation
 - Translationnal TX loop
 - Modulation of sigma delta frequency synthesizer
 - Two point modulation
- DDS and ILO based RF transmitter
 - Injection Locked Oscillator
 - 400 MHz DDS
 - Bluetooth DDS/ILO based transmitter

FSK modulation (1)

FSK : Frequency Shift Keying

- Bit duration = Tb
- RF expression:

$$\mathsf{RF}(\mathsf{t}) = \mathsf{A}\cos(\omega_0 \mathsf{t} + \pi\Delta \mathsf{f}\int_0^{\mathsf{t}} \mathsf{s}(\mathsf{u})\mathsf{d}\mathsf{u})$$

- Modulation index : $h = \Delta f/fb$
- Phase deviation over one bit : π.Δf.Tbit

MSK modulation

- When FSK modulation index = 0.5 -> MSK
- Phase deviation over one Tbit : 90°

GMSK modulation(2)

• FSK spectral occupation : $\frac{2}{T}$ +

$$\frac{2}{T_{b}} + \Delta f$$

 GMSK : filtering data using a gaussain filter in order to lower the spectral occupation without information loss

GMSK modulation(3)

STMicroelectronics

Fractional N PLL based Transmitter

STMicroelectronics

Gaussian Filter optimisation(2)

- Determination of optimal impulse response length L and oversampling coefficient R.
- Coefficient number: R*L

Gaussian Filter Optimisation(3)

- Constraints on L&R
 - $R_{max} = f_{ref} / f_{bit}$
 - Area occupied by digital filter
 - Phase error due to the pulse response sampling

Gaussian Filter Compensation

 Before comparison, filters need to be compensated in gain and group delay

STMicroelectronics

R L	2	4	8	16	32
1	12.9	10.2	9.6	9.5	9.4
2	3.9	2.74	2.46	2.39	2.37
3	1.7	0.56	0.29	0.23	0.22
4	1.6	0.39	0.10	0.04	0.03
5	1.6	0.38	9.9E-2	3.8E-2	3.1E-2
6	1.6	0.38	9.9E-2	3.8E-2	3.1E-2

- Table gives the quadratic phase error in degrees
- L=3 R=8 has been chosen

GMSK Modulator Implementation (1)

 Gaussian filter of 3-bit impulse response could be seen as a sliding window of 3 bits and that concerns 4 bit

 Idea: store in a ROM the filter response over 4 bits sequences (16 possibilities)

GMSK Modulator implementation (2)

GMSK modulator implementation (3)

STMicroelectronics

PLL bandwidth influence on modulation (1)

PLL bandwidth influence on phase noise

PLL bandwidth tradeoff

Integrated error decreases with PLL bandwidth

Phase noise increases with PLL bandwidth

PLL bandwidth effect on GSMK modulation

Modulation Bandwidth Extension

- Predistortion filter to counteract the run bandwidth effect
- Needs to know and control the PLL transfer bandwidth over PVT -> rather complicated

Outline

- Introduction
 - Transmitter integration challenges
- Frequency Synthesizer Modulation
 - Translationnal TX loop
 - Modulation of sigma delta frequency synthesizer
 - Two point modulation
- DDS and ILO based RF transmitter
 - Injection Locked Oscillator
 - 400 MHz DDS
 - Bluetooth DDS/ILO based transmitter

- Principle : PLL is a high pass filter for VCO noise and a low pass filter for divider noise.
- Idea : apply modulation on both divider and VCO to enlarge the modulation bandwidth

Modulated Divider Small Signal Model

Frequency step at divider output:

$$df = \frac{f_{VCO}}{N+1} - \frac{f_{VCO}}{N} \approx -\frac{f_{VCO}}{N_{avg}^{2}} \approx -\frac{f_{Ref}}{N_{avg}}$$

Frequency modulation due to divider modulus deviation:

$$df_{ref}(t) = -n(t) * \frac{f_{ref}}{N_{avg}} \qquad m(t) = n(t) * fref$$

Integration in z domain then in laplace domain leads to:

$$d\phi(p) = -2\pi \frac{m(p)}{p} * \frac{1}{N_{avg}}$$

Two Point Modulation : small signal analysis (1)

- Modulation applied on another VCO varactor
- Modulation applied on feed back loop divider: modulates the frequency need thus to be integrated in phase noise model

Two Point Modulation : small signal analysis (1)

Output response for VCO modulation:

$$\phi_{\text{out1}} = 2\pi K_{v2}G_v \frac{m(p)}{p} \frac{1}{1+BO(p)}$$

• Output response for divider modulation $\phi_{out2} = G_{Div} \frac{m(p)}{p} \frac{BO(p)}{1+BO(p)}$

Output response for modulation applied on both inputs

$$\phi_{out} = \phi_{out2} + \phi_{out1} = 2\pi \frac{m(p)}{p} \left(\frac{G_v K_{v2} + G_{div} BO(p)}{1 + BO(p)} \right)$$

Two Point Modulation : small signal analysis (2)

• If Gdiv = 1 and Gv = 1/Kv2:

$$\phi_{out} = 2\pi \frac{m(p)}{p}$$

- It is thus possible to use a frequency synthesizer as a modulator even for bandwidth signal greater than the PLL bandwidth
- Accuracy of the method depends strongly on the accuracy of the gain Gv that should equal to the 1 over the VCO gain.

Example: GMSK modulation

- GFSK 1Mb/s modulation index 0.33
- Gaussian filtering index BT = 0.5

Bluettooth Eye Diagram

 Bluetooth specifies minimum openings of transmitted data eye diagram

PLL test bench

Modulation gain vs gain on VCO

Effect on eye Diagram

Output PLL Modulation

time, usec

Precision on VCO gain

- Precision on VCO gain degrades eye opening -> precision needed of 5 %
- Need to calibrate the VCO gain before each transmission in a new channel

Outline

- Introduction
 - Transmitter integration challenges
- Frequency Synthesizer Modulation
 - Translationnal TX loop
 - Modulation of sigma delta frequency synthesizer
 - Two point modulation

DDS and ILO based RF transmitter

- Injection Locked Oscillator
- 400 MHz DDS
- Bluetooth DDS/ILO based transmitter

Research context

- Frequency synthesis and transmitter trend
 - All digital
 - Re-congirugability : going towards SDR: Software Defined Radio
- Try to be competitive with all digital PLL
- Applications: phase modulator to be able to be embedded in polar TX – Able to transmit constant phase envelop modulations (GSM, Bluetooth...)

Proposed Architecture

- Fully Integrated Bluetooth transmitter:
 - Fully integrated Reference Oscillator (based on BAW oscillator for example)
 - RF DDS generating 500 MHz signal
 - Injection Locked Oscillator as a frequency multiplier
- Advantages:
 - No feed Back Loop
 - Fully integrated
 - Could be quickly Powered on
 - Low phase group delay -> easy to handle within polar TX

Proposed Architecture

- Fully Integrated Bluetooth transmitter:
 - Fully integrated Reference Oscillator (based on BAW oscillator for example)
 - RF DDS generating 500 MHz signal
 - Injection Locked Oscillator as a frequency multiplier
- Advantages:
 - No feed Back Loop
 - Fully integrated
 - Could be quickly Powered on
 - Low phase group delay -> easy to handle within polar TX

Outline

Introduction

- Transmitter integration challenges
- Frequency Synthesizer Modulation
 - Translationnal TX loop
 - Modulation of sigma delta frequency synthesizer
 - Two point modulation
 - DDS and ILO based RF transmitter
 - Injection Locked Oscillator
 - 400 MHz DDS
 - Bluetooth DDS/ILO based transmitter

Injection Locking Phenomenon

Injection Locking Theory (1) - Huntoon & Weiss (194

Solid fact

> Oscillator frequency is function of admittance load $Y_0 \rightarrow f_{\parallel 0} = fct(Y_0)$

$$\mathsf{E}_{\mathsf{F}} = \frac{\partial \mathsf{f}}{\partial \mathsf{Y}} \Big|_{\mathsf{Y} = \mathsf{Y}_0} = \left| \mathsf{E}_{\mathsf{F}} \right| \cdot \mathsf{e}^{\mathsf{j}.\beta}$$

Hypothesis

 \geq Injected signal at f_{LOCK} in the vicinity of f₀

 $> I_{LOCK}$ magnitude small enough to not modify V₀ magnitude Assumption

 \geq Locking source modeled by a small load admittance variation dy

Injection Locking Theory (2) - Huntoon & Weiss (1947)

Huntoon & Weiss theory leads to:

 $\frac{1}{2.\pi} \cdot \frac{d\phi}{dt} = (f_{LOCK} - f_0) - \frac{|E_F| \cdot |I_{LOCK}|}{|V_0|} \cdot \cos(\phi + \beta)$

$$\phi = \phi_{\text{LOCK}} - \phi_{\text{ILO}}$$

LOCK

 $\Delta f = 2 \cdot$

Constant depending on oscillator structure and locking process

ILO Modulation

Modulated locking signal phase $\phi_{LOCK}(t) = 2.\pi f_{LOCK} t + m(t)$ ILO output phase once locked $\phi_{ILO}(t) = 2.\pi f_{LOCK} t + n(t) - \phi_0$ $\frac{1}{2.\pi} \cdot \frac{d\phi}{dt} = \left[\left(f_{LOCK} + \frac{1}{2 \cdot \pi} \cdot \frac{dm(t)}{dt} \right) - f_0 \right] - \frac{|\mathsf{E}_{\mathsf{F}}| \cdot |\mathsf{I}_{LOCK}|}{|\mathsf{V}_0|} \cdot \cos(\phi + \beta)$ $\phi(t) = \phi_{\mathsf{SYNC}}(t) - \phi_{\mathsf{ILO}}(t) = m(t) - n(t) + \phi_0$

Assuming a small tracking phase error

$$\frac{1}{2 \cdot \pi} \cdot \frac{dn(t)}{dt} = f_n \cdot [m(t) - n(t)] \xrightarrow{\text{Fourier}}_{\text{Transform}} \frac{n(f)}{m(f)} = \frac{1}{1 + j \cdot \frac{f}{f_n}}$$
$$f_n = \sqrt{\frac{(\Delta f)^2}{4} - (f_{\text{LOCK}} - f_0)^2}$$

Tracking Phase Modulation

Ability to track phase modulation

ILO Tracking Bandwidth

 Tracking bandwidth depends on the difference between the Injected signal frequency and the ILO free running frequency

2-GHz Injection Locked Oscillator Design

$$C_{AB} = C + C_{M1} + C_{M2} + C_{PARASITIC}$$

∆f parameters known
→ Optimized design possible

Injection Locking by a Sub-harmonic dB dB Fundamental Sub Harmonic Injection Injection Locking Locking f₀5.f_{LOCK} f₀f_{LOCK} **f**LOCK Free running oscillator ····· Injected signal Locked oscillator voltage **Locking current** Locking source rich in nth harmonic **I**₀ **2.I**₀ $\mathbf{I}_{N} = \mathbf{I}_{LOCK}$ V₀ n.π $\mathsf{T}_{\mathsf{LOCK}}$ $T_{PULSE} = \alpha . T_{LOCK}$ T_0

2-GHz Fifth SbILO Schematic

2-GHz Fifth SbILO layout

0.35-µm BiCMOS STMicroelectronics technology

Design Summary

PARAMETER		VALUE	
Technology		0.35-µm BiCMOS STMicroelectronics	
Voltage Supply		2.5 V	
Current Consumption		16 mA	
Current Consumption	Output Buffers	15 mA	
	ILO Core + Pulse Generator + Bandgap Current Source	1 mA	
Locking Range		400 MHz	
Center Frequency		2 GHz	
Chip Area (w/o pads and buffers)		0.160 mm ²	

-46.0 dB Bessel function of Phase multiplied by $5 \rightarrow 20.\log_{10}(5) = 14 \text{ dB}$

Spectrum Measurements

ILO : Proof of Concept (1)

• ILO designed in BiCMOS6 as a multiplier by 5

ILO : Proof of Concept (2)

ILO output

Test	Maximum Values Required	SBILO INPUT	SBILO OUTPUT
Phase Error (° rms)	5	0.22	0.26
Phase Error ([°] Peak)	20	0.83	0.85

Conclusion ILO

- A theory on ILO modulation has been proposed
- A fifth sub-harmonic injection locked oscillator designed
 - Wide locking range: 400 MHz
 - Center frequency: 2 GHz
- Spectrum at SbILO output can be predicted for
 - Low phase deviation with Bessel function or Taylor development
 - Large phase deviation with Bessel function of the first kind
 - Frequency deviation thanks to the ILO multiplication ratio
- Phase error introduced by ILO once modulated negligeable

Outline

- Introduction
 - Transmitter integration challenges
- Frequency Synthesizer Modulation
 - Translationnal TX loop
 - Modulation of sigma delta frequency synthesizer
 - Two point modulation

DDS and ILO based RF transmitter

- Injection Locked Oscillator
- 400 MHz DDS
- Bluetooth DDS/ILO based transmitter

$$\begin{split} &\mathsf{V}_{\mathsf{RF}}(t) = \mathsf{A}\cos(\omega_{_1}t) = \mathsf{A}\cos(\omega_{_0}t + \omega_{_1}t) = \mathsf{A}\cos(\omega_{_0}t + \phi(t)) \\ &\varphi(t) = 2\pi \mathsf{f}_1 t \end{split}$$

- Frequency synthesis could be seen as a phase modulation, where the modulated phase is a ramp.
- The slope of the ramp is related to the frequency step
- Frequency synthesizer composed of
 - An RF clock
 - A phase shifter that increments a value at each rising edge of the clock

400 MHz DDS architecture (1)

400 MHz DDS architecture (2)

- Advantages
 - ROM less
 - High frequency (classical implementation output frequency restricted to Fclock/2 at least)
- Drawbacks
 - Step frequency limited by the resolution of the digitally controlled phase shifter
 - Spurious response depends on the phase accuracy

Decreasing Step Frequency

 ΣΔ modulator is used to decrease the step of the DDS by switching ramdomly between two coarse frequencies

Outline

- Introduction
 - Transmitter integration challenges
- Frequency Synthesizer Modulation
 - Translationnal TX loop
 - Modulation of sigma delta frequency synthesizer
 - Two point modulation

DDS and ILO based RF transmitter

- Injection Locked Oscillator
- 400 MHz DDS
- Bluetooth DDS/ILO based transmitter

DDS based RF transmitter principle

- f_{DDS} : DDS output frequency
- df : frequency step
- ΣΔ modulator synthesizes carrier frequency and shapes quantification noise.
- An ILO will act as a frequency multiplier to get the RF signal

Frequency plan

- GSM (x2) DCS
 - Frequency range: 1710 1830 MHz
 - Frequency step: 0.1 ppm (170 Hz)
 - ILO multiplication factor: 4
 - DDS frequency range 427.5 457.5 MHz
 - DDS Frequency step: 42.5 Hz
- Bluetooth
 - Frequency range: 2402 2480 MHz
 - Frequency step: 1 ppm (2400 Hz)
 - ILO multiplication factor: 5
 - DDS frequency range: 480.4 496 MHz
 - DDS frequency step: 480 Hz

Bluetooth schematic

 $\Sigma\Delta$ generates 2^{N_{SD}} frequencies between f₀ and f₀+df

Transmitter modelization- Bluetooth

Lowering df lowers the phase noise

GSM/DCS schematics

 $\Sigma\Delta$ modulator generates 2^{N_{SD}} frequencies between f₀ and f₀+df

Transmitter modelisation- GSM/DCS

Modulations

Bluetooth

- f_{BIT}: 1 MHz
- Modulator ovesampling: 32
- Symbols number: 50
- 🖅 df: 400 kHz

GSM

- f_{BIT}: 270.833 kb/s
- Modulator oversampling: 64
- Symbols number: 148
- 🖅 df: 400 kHz

Detailed DDS bloc Diagramm

DDS frequencies calculation

- 1 phase interpolation each 4T_{CLK}
- (2⁸ 1) phases in T_{CLK}

 $f_{CLK} = 2 GHz$

$$f_{CLK}/4 = 500 \text{ MHz}$$

P = 0 → f_{DDS_MAX} = 500 MHz P = 2⁸-1 → f_{DDS_MIN} = 400 MHz $\Delta f \approx 500 \text{ kHz}$

ΣΔ Combinations

Detailed DDS bloc Diagramm

ΣΔ advantages

P is composed of an integer part P_{PA} and a fractional one P_{SD}

- Diminution of frequency resolution
- Quantisizer noise shaping

DDS micrograph

CMOS 65-nm STMicroelectronics

Active ara: 0.1 mm² Power supply: 1.2 V Power consumption: 29 mW (without buffers)

State machine, $\Sigma\Delta$, And phase accumulator P&R with standard cells

Clock

Typcal: 2 GHz worst case: 2.8 GHz

package: TQFP 32

Phase Noise – LO / DDS -70 -80 -2-GHz LO -90 -100 -100 -110 -120 -130 - 500-MHz DDS -140 -150 1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08 f (Hz)

DDS state of the art

		Lindeberg	Daï	Strollo	Ce travail
		JSSC 2005	JSSC 2006	JSSC 2007	ASSCC 2007
Fréquence de sortie (MHz)	Min	0	0	0	400
	Мах	100	150	315	500
Fréquence d'horloge (MHz)		200	300	630	2000
Sortie		1 bit CAN 1 bit	1 bit CNA 12 bits	13 bits <i>quadrature</i>	1 bit CNA 8 bits
Tension d'alimentation (V)		1.5	3.3	2.5	1.2
Puissance consommée (mW)		138	200	76	29
Technologie (µm)		0.13	0.35	0.25	0.065
Surface (mm ²)		2,02	1.11	0.063	0.1
Figure de mérite (mW/MHz)		690	666	121	29

- Output Frequency Range: 2 to 2.5 GHz
- Frequency step : 300 Hz
- RF filtering provided by ILO

ILO frequency multiplication

Transmitter Micrograph

CMOS 65-nm STMicroelectronics

Active area: 0.25 mm² Power Supply: 1.2 V Dissipated Power: 37 mW (without output buffers)

DDS + ILO

ILO locking range programmable From 1 to 31 MHz

TQFP 48 package

Transmitter output spectrum

GSM 1 Bluetooth Modulation Plots

Modulation

Modulation

Conclusion

- Innovative tansmitter based on Phase Shifter based pulse output DDS
- Demonstrated feasability from system to silicon
 - Matlab modelization including mismatches
 - DDS measurement
 - DDS output frequency from 400 MHz to 500 MHz
 - 60 Hz frequency resolution
 - 29 mW
 - Transmitter Measurement
 - Frequency band from 2 GHz à 2.5 GHz
 - 300 Hz frequency resolution
 - 37 mw

 This presentation is based on Ph D work of L.Camino (modulation of ΣΔ fractional PLL) and T. Finateu (DDS –ILO based transmitter)