CMOS Sigma-Delta Converters From Basics to State-of-the-Art

[^0]Barcelona, 29-30 / Septiembre / 2010

DIFRMET Quen ew of non-idealites

- Depending on the building-block:

Amplifiers:

- Output swing

DC gain
Dynamic limitations (GB, SR)
Thermal and $1 / \mathrm{f}$ noise
Gain non-linearity

Capacitors:

- Mismatch

Non-linearity

Switches:

Finite on-resistance
Thermal noise
Charge injection
Clock feedthrough
Non-linearity

Comparators:

- Hysteresis

Offset

Fully-diff SC schematic of a 2 nd-order $\Sigma \Delta M$

Clock:

- Jitter

References:

- Thermal and $1 / f$ noise

Output impedance

Multi-bit ADCs \& DACs:

- Gain error

Offset error
Non-linearity

DIF Fivs evenvew of non-identites

- Depending on their effect:

ERRORS DEGRADI NG NTF

- AMPLIFIER DC GAIN
- CAPACITOR MISMATCH
- INTEGRATOR SETTLING
- Amplifier GB
- Amplifier SR
- Switch $R_{\text {on }}$

Impact depends on topology

SI NGLE-LOOP $\Sigma \Delta$ Ms
\rightarrow Low sensitivity

CASCADE $\Sigma \Delta \mathrm{Ms}$ \rightarrow Noise leakages

Imperfect cancellation of low-order quantization errors

DIFIMST evenem of non-idealites

- Depending on their effect:

ERRORS DEGRADING NTF

- AMPLIFIER DC GAIN
- CAPACITOR MISMATCH
- INTEGRATOR SEITLING
- Amplifier GB
- Amplifier SR
- Switch $R_{\text {on }}$

Impact depends on topology

SI NGLE-LOOP $\Sigma \Delta$ Ms
\rightarrow Low sensitivity

CASCADE $\Sigma \Delta$ Ms
\rightarrow Noise leakages
I mperfect cancellation of low-order quantization errors

MODELED AS ADDITIVE ERRORS

- CIRCUIT NOISE
- Thermal noise (switches, opamps, refs)
- 1/f noise (opamps, refs)
- CLOCKJITTER
- DISTORTION
- Non-linear amplifier gain
- Non-linear capacitors
- Non-linear settling
v Non-linear switches

Front-end dominates

Similar impact on different topologies

DiEsulve integrator eakage

- Effect of amplifier gain on the integrator transfer function:

Ideal SC integrator

$$
v_{o, n}=v_{o, n-1}+g \cdot v_{i, n-1} \underset{\rightarrow}{\longrightarrow} v_{o, n}=\frac{1}{1+\frac{(1+g)}{A_{D C}}}\left[\left(1+\frac{1}{A_{D C}}\right) \cdot v_{o, n-1}+g \cdot v_{i, n-1}\right]
$$

$$
H(z)=g \frac{z^{-1}}{1-z^{-1}} \longrightarrow H(z) \cong g \frac{z^{-1}}{1-z^{-1}\left(1-\frac{g}{A_{D C}}\right)}=g \frac{z^{-1}}{\frac{1-z^{-1}(1-g \mu)}{\mu=1 / A_{D C}}}
$$

Shift of the pole
from $D C(z=1)$

Q 2 and st hiegrator eakge

■ Effect on single-loop $\Sigma \Delta \mathrm{Ms}$:

- Ideally: $H(z)=\frac{z^{-1}}{1-z^{-1}}$

$$
Y(z)=z^{-2} X(z)+\left(1-z^{-1}\right)^{2} E(z)
$$

Lth-order $\Sigma \Delta M$:
$\Delta P_{Q} \cong \frac{\Delta^{2}}{12} \frac{L \mu^{2} \pi^{2 L-2}}{(2 L-1) O S R^{(2 L-1)}}$
Quite insensitive to leakages ($\mu^{2}, L-1$ shaping)

Di ExiN SH I nedrator eakage

- Effect on cascade $\Sigma \Delta \mathrm{Ms}$: 2-1-1 $\Sigma \Delta \mathrm{M}$

Analog	Digital	
$g_{2}{ }^{\prime}=2 g_{1}{ }^{\prime} g_{2}$	$d_{0}-\frac{g_{3}^{\prime}}{g_{1}{ }^{\prime} g_{2} g_{3}}-1$	$H_{1}(z)-z^{-1}$
$g_{4}^{\prime}=g_{3}{ }^{\prime \prime} g_{4}$	$d_{1}-\frac{g_{3}{ }^{\prime \prime}}{g_{1}{ }^{\prime} g_{2} g_{3}}$	$H_{2}(z)-\left(1-z^{-1}\right)^{2}$
	$d_{2}=0$	$H_{3}(z)=z^{-1}$
	$d_{3}=\frac{g_{4}{ }^{\prime \prime}}{g_{1}{ }^{\prime} g_{2} g_{3} g_{4}}$	$H_{4}(z)=\left(1-z^{-1}\right)^{3}$

Mismatch between analog and digital / filtering

- Ideally:
$Y(z)=\operatorname{STF}(z) X(z)+N T F_{1}(z) E_{1}(z)+$
$+N T F_{2}(z) E_{2}(z)+N T F_{3}(z) E_{3}(z)$
$\Rightarrow\left\{\begin{array}{l}\operatorname{STF}(z)=z^{-4} \\ \operatorname{NTF}_{1}(z)=0 \\ \operatorname{NTF}_{2}(z)=0 \\ \operatorname{NTF}_{3}(z)=d_{2}\left(1-z^{-1}\right)^{4}\end{array}\right.$

$$
\begin{aligned}
& \text { - In practice: } H(z)=\frac{z^{-1}}{1-z^{-1}(1-\mu)} \\
& P_{Q}(\mu) \\
& \Rightarrow \\
& \Rightarrow \frac{\frac{\Delta_{1}^{2}}{12}\left(\frac{4 \mu^{2} \pi^{2}}{3 O S R^{3}}\right)+\frac{\Delta_{2}^{2}}{12} d_{1}^{2}\left(\frac{\mu^{2} \pi^{4}}{5 O S R^{5}}\right)}{} \\
& \quad+\frac{\Delta_{3}^{2}}{12} d_{3}^{2}\left(\frac{\mu^{2} \pi^{6}}{7 O S R^{7}}+\frac{\pi^{8}}{9 O S R^{9}}\right)
\end{aligned}
$$

low-order leakages $\left(L_{1}-1, L_{2}-1, \ldots\right)$

DHEAN EH TitGoration ea Rage

Comparison of integrator leakage effect on 4th-order $\Sigma \Delta \mathrm{Ms}$

\rightarrow Sensitivity to int. leakages of cascades increases with OSR and L
\rightarrow 1st-stage leakages dominate ($L_{1}-1$ shaping)

DIF FIMST Eapactior mismatch

$$
\begin{aligned}
C=C_{o x c}^{*} \cdot(\boldsymbol{W} \cdot \boldsymbol{L}) \quad \text { Local and global errors in: } & \text { Area } \\
\text { Actual } \neq \text { Ideal } & \\
& \text { Capacitance per Unit Area }
\end{aligned}
$$

- Edge Errors

Errors in thickness and dielectric constant

$g=\frac{C_{1}}{C_{2}}=\frac{n C_{u}}{m C_{u}}$
$\frac{\sigma_{g}}{g}=\sqrt{\frac{1}{n}+\frac{1}{m}} \cdot \frac{\sigma_{C u}}{C_{u}}$
$\sigma_{c} \sim 0.05 \%-0.1 \%$
using good quality
caps and adequate layout strategies

DiF zilus eapaditor mismation

- Effect on single-loop $\Sigma \Delta \mathrm{Ms}$:

2nd-order $\Sigma \Delta M$

- In practice:

$$
\begin{aligned}
& g_{i}^{*}=g_{i}\left(1 \pm \varepsilon_{g_{i}}\right) \\
& \varepsilon_{g_{i}}=3 \frac{\sigma_{g_{i}}}{g_{i}}=3 \sqrt{\frac{1}{m_{i}}+\frac{1}{n_{i}}} \sigma_{C}
\end{aligned}
$$

$S T F(z) \cong\left(1-\left|\varepsilon_{g_{1}}-\varepsilon_{g_{1}}\right|\right) z^{-2} \cong z^{-2}$
$N T F(z) \cong\left(1+\varepsilon_{g}\right)\left(1-z^{-1}\right)^{2}, \varepsilon_{g}=\varepsilon_{g_{2}}+\varepsilon_{g_{1}}{ }^{\prime}$
Slight increase of error, but shaping is preserved

$$
P_{Q}\left(\varepsilon_{g}\right) \cong \frac{\Delta^{2}}{12}\left[\frac{\left(1+\varepsilon_{g}\right)^{2} \pi^{4}}{5 \operatorname{OSR}^{5}}\right]
$$

DIEFINSI Capadtor mismatich

- Effect on cascade $\Sigma \Delta \mathrm{Ms}$:

Mismatch between analog and digital coeffs

- Ideally:

$$
\begin{aligned}
Y(z)= & \operatorname{STF}(z) X(z)+N T F_{1}(z) E_{1}(z)+ \\
& +\operatorname{NTF}_{2}(z) E_{2}(z)+N T F_{3}(z) E_{3}(z) \\
\Rightarrow & \left\{\begin{array}{l}
\operatorname{STF}(z)=z^{-4} \\
\operatorname{NTF}_{1}(z)=0 \\
N T F_{2}(z)=0 \\
\operatorname{NTF}_{3}(z)=d_{2}\left(1-z^{-1}\right)^{4}
\end{array}\right.
\end{aligned}
$$

$$
\text { - In practice: } g_{i}^{*}=g_{i}\left(1 \pm \varepsilon_{g_{i}}\right)
$$

$$
\Rightarrow\left\{\begin{array}{l}
\operatorname{STF}(z) \cong z^{-4} \\
\operatorname{NTF}_{1}(z) \cong \varepsilon_{1} z^{-2}\left(1-z^{-1}\right)^{2} \\
\operatorname{NTF}_{2}(z) \cong d_{1} \varepsilon_{2} z^{-1}\left(1-z^{-1}\right)^{3} \\
\operatorname{NTF}_{3}(z) \cong d_{2}\left(1+\varepsilon_{3}\right)\left(1-z^{-1}\right)^{4}
\end{array}\right.
$$

low-order leakages $\left(L_{1}, L_{2}, \ldots\right)$
－Effect on cascade $\Sigma \Delta \mathrm{Ms}$ ：

PI RMNE Copactior mismatch

- Effect on cascade $\Sigma \Delta \mathrm{Ms}$:

Sensitivity to mismatch rapidly increases with:

- Oversampling ratio (OSR)
- Cascade order (L)

1st-stage leakages dominate (L_{1} shaping)

Qiesulvs integrator incomple setuling

Integrator temporal evolution: [Rio00]

- Both integration and sampling dynamics considered
- 1 pole model + SR limitation in amplifiers
- All parasitic caps taken into account

Single-pole non-linear Dynamic

- Effect of the amplifier GB:

\rightarrow If only amplifier GB is considered (assuming no SR limitation)

$$
\begin{gathered}
G B_{i}=\frac{g_{m}}{C_{e q, 1}} \quad G B_{s}=\frac{g_{m}}{C_{e q, s}} \\
v_{o}(z)=\frac{C_{S}}{C_{I}}\left(1-\varepsilon_{s t}\right) \frac{z^{-1} v_{t w}(z)-z^{-1 / 2} v_{f b}(z)}{1-z^{-1}} \\
\varepsilon_{s t} \sim \theta_{i}\left[\exp \left(-G B_{i} \frac{T_{s}}{2}\right)\right]+\theta_{s}\left[\exp \left(-G B_{s} \frac{T_{s}}{2}\right)\right]+\theta_{i} \cdot \theta_{s}
\end{gathered}
$$

* * 4th-order

0 1-1-1-1
\square 2-1-1
$\square-2-1-1$
$\triangle \triangle 2-2$
…. OSR $=64$
-- OSR $=32$
-- OSR = 16

- OSR = 8

DiEFINGF in tegrator incomple setuling

- Additional effect of the amplifier $\operatorname{SR}(+\mathrm{GB})$:
- "Dominant" linear dynamics are not mandatory in order to fulfill specs
- SR can be traded for GB
- It can be used to optimize the power consumption of amplifiers

Non-linear dynamics cause distortion!
SR at the front-end integ must be carefully tackled

QHEFINSE ITEORATO Incompese setuling

■ Additional effect of the switches Ron (+GB+SR):

\rightarrow Input is sampled with an error
(1) $\varepsilon_{o n, s}=\exp \left(-\frac{1}{2 R_{o n} C_{S}} \frac{T_{s}}{2}\right)$
\rightarrow Linear dynamics are slowed down
(2) $G B_{i, \text { on }}=\frac{G B_{i}}{1+G B_{i} \cdot 2 R_{\text {on }} C_{S}}$
(3) $G B_{s, \text { on }}=\frac{G B_{s}}{1+G B_{s} \cdot 2 R_{\text {non }} C_{n S}}$
\rightarrow Slew time shortens

DTEFINSH CTCUHTOSe

Main noise sources in SC integrators:

- Switches \rightarrow Thermal noise
- Amplifiers \rightarrow Thermal and flicker noise
- References \rightarrow Thermal and flicker noise

- Noise contribution of the switches (input-referred):

Switches for sampling $S_{S}=2 k T \cdot 2 R_{o n}$

$$
\begin{aligned}
& H_{S \phi_{1}}(s)=\frac{1}{1+s \cdot 2 R_{o n} C_{S}} \\
& B W_{n, S \phi_{1}}=\int_{0}^{+\infty}\left|H_{S \phi_{1}}(f)\right|^{2} d f=\frac{1}{4 \cdot 2 R_{o M} C_{S}} \\
& S_{i n, S \phi_{1}}(f) \cong \frac{2 B W_{n, S \phi_{1}}^{f_{s}} \cdot S_{S} \cong \frac{k T}{C_{S} f_{s}}}{} \quad \begin{array}{l}
\text { Aliased } \\
\text { component } \\
\text { [Fisc82] }
\end{array}
\end{aligned}
$$

Main noise sources in SC integrators:

- Switches \rightarrow Thermal noise
- Amplifiers \rightarrow Thermal and flicker noise
- References \rightarrow Thermal and flicker noise

- Noise contribution of the switches (input-referred):

Switches for sampling $S_{S}=2 k T \cdot 2 R_{\text {on }}$ Switches for integration

$$
\begin{array}{ll}
H H_{S \phi_{1}}(s)=\frac{1}{1+s \cdot 2 R_{o n} C_{S}} & H_{S \phi_{2}}(s)=\frac{1+s / z_{1}}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right)} \quad z_{1}=\frac{g_{m}}{C^{1}} \quad p_{1} \cong \frac{g_{m}}{C_{e q, i}} \quad p_{2} \cong \frac{C_{e q, i}}{C^{\prime}} \cdot \frac{1}{2 R_{o n} C_{S}} \\
B W_{R_{0} S \phi_{1}}=\int_{0}^{+\infty}\left|H_{S \phi_{1}}(f)\right|^{2} d f=\frac{1}{4 \cdot 2 R_{o n} C_{S}} & B W_{n, S \phi_{2}}=\int_{0}^{+\infty}\left|H_{S \phi_{2}}(f)\right|^{2} d f \cong \frac{p_{2}}{4} \approx \frac{1}{4 \cdot 2 R_{o n} C_{S}} \\
S_{i n, S \phi_{1}}(f) \cong \frac{2 B W_{n, S \phi_{1}}}{f_{s}} \cdot S_{S} \cong \frac{k T}{C_{S S} f_{s}} & S_{i n, S \phi_{2}(f) \cong \frac{2 B W_{n, S \phi_{2}} \cdot S_{S} \cong \frac{k T}{C_{S}}}{}}=1
\end{array}
$$

DIEFANGH CTCUTEnoise

- Noise contribution of the amplifier (input-referred):

Thermal + Flicker

Thermal component

$$
\begin{aligned}
& H_{o p}(s)=\frac{1}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right)} \quad p_{1} \cong \frac{g_{m}}{C_{e q, i}} \quad p_{2} \cong \frac{C_{e q, i} \cdot \frac{1}{C^{\prime}} \cdot \frac{1}{2 R_{o n} C_{S}}}{B W_{n, o p}=\int_{0}^{+\infty}\left|H_{o p}(f)\right|^{2} d f \cong \frac{p_{1}}{4} \cong \frac{g_{m}}{4 C_{e q, i}}} \\
& S_{i n, o p}^{t}(f) \cong \frac{\mathbf{2 B} W_{n, o p}}{f_{s}} \cdot S_{o p}^{t} \cong \frac{G B_{i}}{\mathbf{2 f} f_{s}^{\prime}} \cdot S_{o p}^{t} \longleftarrow \text { Aliased }
\end{aligned}
$$

Similar treatment for the references

Total noise PSD for the front-end integ:

$$
S_{e q, i n}(f) \cong \underbrace{\frac{2 k T}{C_{s} f_{s}}}_{\text {switches }}+\underbrace{S_{o p}^{t}\left(\frac{G B_{i}}{2 f_{s}}+\frac{f_{c r,, p}}{|f|}\right)}_{\text {amplifier }}+\underbrace{S_{r e f}^{t}\left(\frac{G B_{r e f}}{2 f_{s}}+\frac{f_{c r, r e f}}{|f|}\right)}_{\text {references }}
$$

Switches:

- $k T / C$ is the ultimate limitation on the converter resolution
- It can only be decreased by increasing Cs and/or fs (it does not depend on Ron!)
- $\quad x 2$ in fully-diff implementations (3-dB increase, but signal power is 6 dB larger!)

Amplifiers \& References:

- GBs should be as low as settling errors allow (reduces folding!)
- $1 / \mathrm{f}$ contributions decrease with the corner frequency
- Adequate techniques can be applied in low-freq apps: CDS, chopper, ... [Enz96]

$$
P_{C N, i n} \cong\left[\frac{2 k T}{C_{S}}+S_{o p}^{t} \frac{G B_{i}}{2}+S_{r e f}^{t} \frac{G B_{r e f}}{2}\right] \frac{1}{O S R}+2 \ln \left(\frac{f_{b}}{f_{o}}\right)\left(S_{o p}^{t} f_{c r, o p}+S_{r e f}^{t} f_{c r, r e f}\right)
$$

In-band error power due to circuit noise in the $\Sigma \Delta \mathrm{M}$

Effect of noise leakages and thermal noise on a 2-1 cascade

Effect of $1 / \mathrm{f}$ and thermal noise on the spectra of a 4th-order $\Sigma \Delta \mathrm{M}$ (silicon results for several fs)

Be careful with Flicker models for transistors!
Front-end amplifier needed redesign!

DIE सHE Clock fiter

- Sampling time uncertainty [Boser88]:

\rightarrow If jitter is modeled as random:

$$
S_{J}=\frac{A_{x}^{2}}{2} \frac{\left(2 \pi f_{x} \sigma_{J}\right)^{2}}{f_{s}}
$$

$$
P_{J}=\frac{A_{x}^{2}}{2} \frac{\left(2 \pi f_{x} \sigma_{J}\right)^{2}}{O S R}
$$

Error is larger, the larger input freq (wideband apps!)

Q1EFHNGH Non-linearity of capactitors

\rightarrow In an ideal capacitor: $d q=C d v$
\rightarrow In practice: $\mathrm{dq}=\mathrm{C}(\mathrm{v}) \mathrm{dv}$, with C being voltage-dependent

$$
C(v)=C\left(1+a_{1} v+a_{2} v^{2}+\ldots\right)
$$

\rightarrow Considering the effect of the sampling cap only [Bran97]:

$$
v_{o, n} \cong v_{o, n-1}+g_{1} v_{i n, n-1}\left(1+\frac{a_{1}}{2} v_{i n, n-1}+\frac{a_{2}}{3} v_{i n, n-1}^{2}\right)
$$

$$
A_{2} \cong \frac{1}{2}\left(\frac{a_{1}}{2} A_{x}^{2}\right) \Rightarrow H D_{2} \cong 20 \log _{10}\left(\frac{a_{1}}{4} A_{x}\right)
$$

$$
A_{3} \cong \frac{1}{4}\left(\frac{a_{2}}{3} A_{x}^{3}\right) \Rightarrow H D_{3} \cong 20 \log _{10}\left(\frac{a_{2}}{12} A_{x}^{2}\right)
$$

- Even-order distortion cancels w/ fully-diff
- Non-linearity of sampling cap dominates
- Valid for weak non-linearities (MOS caps are very non-linear!)

\rightarrow Actual amplifier gain depends on output voltage:

$A_{D C}\left(v_{o}\right)=A_{D C}\left(1+\gamma_{1} v_{o}+\gamma_{2} v_{o}^{2}+\ldots\right)$

$$
\begin{aligned}
& H D_{2} \cong 20 \log _{10}\left(\frac{\gamma_{1}}{2} \frac{(1+g)}{A_{D C}} g A_{x}\right) \\
& H D_{3} \cong 20 \log _{10}\left(\frac{\gamma_{2}}{4} \frac{(1+g)}{A_{D C}} g^{2} A_{x}^{2}\right)
\end{aligned}
$$

- Increasing $A_{D C}$ helps a lot!
- $A_{D C}$ at the front-end larger than noise leakages require
\rightarrow SR can trade for GB in the integrator settling， but non－linear dynamics cause distortion：

Diselver Non linear switch resistance
\rightarrow Switches exhibit a finite R_{ON} which is also non-linear:

$$
\begin{aligned}
& R_{\mathrm{ON}, n}=\frac{1}{k_{n}^{\prime}\left(\frac{W}{L}\right)_{n}\left(V_{D D}-V_{I}-V_{T_{n}}\right)} \\
& \underbrace{}_{R_{\mathrm{ON}, \mathrm{eq}}=R_{\mathrm{ON}, n} / / R_{\mathrm{ON}, p}}=\frac{1}{k_{p}^{\prime}\left(\frac{W}{L}\right)_{p}\left(V_{I}-\left|V_{T_{p} \mid}\right|\right.}
\end{aligned}
$$

■ Non-linear sampling [Geer02]:

- Distortion is dynamic (increases with input freq!)
- Front-end switch dominates
- $R_{\text {ON }}$ at the front-end smaller than settling requires

- Very important in low-voltage!

Most suited sizing depends on parasitics, Vref/Vsupply,

DIE ELVE eomparators and multi- bit quantizens

- Single-bit $\Sigma \Delta \mathrm{Ms}$:

Comparator:

- Offset \rightarrow Attenuated by the integrator DC gain
- Hysteresis \rightarrow Shaped similarly to quantization error [Boser88]

$$
P_{h}=4 h^{2} \frac{\pi^{2 L}}{(2 L+1) O S R^{2 L+1}}
$$

- Multi-bit $\Sigma \Delta \mathrm{Ms}$:

Multi-bit ADC \rightarrow Errors attenuated/shaped
Multi-bit DAC \rightarrow Non-linearity directly added to the input!
[Mede99]: $\quad \sigma_{D}^{2}=\frac{1}{2}\left(\frac{\Delta}{2^{B}-1}\right)^{2} \mathrm{INL}_{\text {LSB }}^{2}$
DEM techniques
Dual quantization

A 2.5-V Cascade SDM in CMOS 0.25um for ADSL/ ADSL+

2-1-1 w/ dual quantization

- Two different amplifiers: 2-stage OA in the 1st stage, and 1-stage OA in 2nd and 3rd stages.
- Standard CMOS switches (no clock-boosting).
- Only 2-branch integrators and 2×16 unit capacitors (MiM).
- Comparators: regenerative latch + preamplification stage.
- 3-bit quantizer in the last stage:
- Resistive-ladder DAC (no calibration).
- Flash ADC: Static differential input stage + latched comparators.
- Power-down control.

$$
\begin{gathered}
P_{C N}=P_{k T / C}+P_{o p}=\frac{4 k T}{C_{S}} \cdot \frac{1}{O S R}+\frac{2 \pi \cdot G B_{\text {eff }}}{2 O S R} S_{o p}^{\prime} \\
G B_{e f f} \cong \frac{G B}{1+G B / f_{o n}}=\frac{G B}{1+G B \cdot 2 \pi \cdot 2 R_{o n} C_{S}}
\end{gathered}
$$

	Typical	Worst Case
Quantization noise	-88.1dB	-86.2dB
Ideal	-90.3dB	
DC gain leakage	-99.8dB	
Cap. mismatch leakage $\left(\sigma_{C}=0.05 \% \mid 0.1 \%\right)$	-95.4dB	-89.4dB
DAC error	-96.4dB	
Thermal noise	$-84.8 \mathrm{~dB}$	-82.2dB
kT/C noise	-88.1dB	-86.0dB
Amplifier noise	-87.5dB	-84.5dB
Clock jitter	-90.1dB	
In-band error power	-82.3dB	-80.3dB
Dynamic range	$\begin{gathered} 82.8 \mathrm{~dB} \\ \text { (13.5bit) } \end{gathered}$	$\begin{gathered} 80.8 \mathrm{~dB} \\ \text { (13.1bit) } \end{gathered}$

MODULATOR	Topology	2-1-1(3b)
	Oversampling ratio	16
	Reference voltage	1.5 V
	Clock frequency	70.4 MHz
	Clock jitter	15ps (0.1\%)
	Sampling capacitor	0.66 pF
	Cap. sigma (MiM, 1pF)	0.05\%
FRONT-END INTEGRATOR	Cap. tolerance	$\pm 20 \%$
	Bottom parasitic cap.	1\%
	Switch on-resistance	150Ω
AMPLIFIER	DC gain	3000 (70dB)
	$G B(1.5 \mathrm{pF})$	265 MHz
	Slew rate (1.5pF)	800V/ $\mu \mathrm{s}$
	Output swing	$\pm 1.8 \mathrm{~V}$
	Input equivalent noise	6nV/sqrt(Hz)
COMPARATORS	Hysteresis	20 mV
	Offset	$\pm 10 \mathrm{mV}$
	Resolution time	3 ns
3-bit QUANTIZER	DAC /NL	0.5\%FS

DIF सiNE Case study

I ntegrator Dynamics

- $G B>2.5 f_{s}$ is ideally enough to limit settling errors (this architecture w/ $O S R=16$).
- Switch on-resistance slows down the effective amplifier response:
$G B_{e f f} \cong \frac{G B}{1+G B / f_{\text {on }}}=\frac{G B}{1+G B \cdot 2 \pi \cdot 2 R_{\text {on }} C_{S}}$

$$
R_{o n} \sim 150 \Omega \text { requires just } G B>3.2 f_{s}
$$

Standard switches $\quad \boldsymbol{G B}=\mathbf{2 6 5 M H z}$

 the clock cycle is useful)- Slew rate must be large enough to let the linear dynamic to correctly settle.

$$
S R /\left(V_{r e f} \cdot f_{\mathrm{s}}\right)=6.5 \Rightarrow S R=800 \mathrm{~V} / \mu \mathrm{s}
$$

- Partially slew-rate limited operation of the front-end integrator introduces distortion.

	INTEGG1	INTEG. 2	INTEG. 3	INTEG. 4
Unit capacitor	0.66pF	0.45pF	0.45 pF	
DC gain	3000 (70dB)		600 (56dB)	
$G B$ (1.5pF)	265 MHz		210 MHz	
Slew rate (1.5pF)	$800 \mathrm{~V} / \mu \mathrm{s}$		$350 \mathrm{~V} / \mu \mathrm{s}$	
Output swing	$\pm 1.80 \mathrm{~V}$		$\pm 1.60 \mathrm{~V}$	
Input equivalent noise	6nV/sqrt(Hz)		$50 \mathrm{nV} / \mathrm{sqrt}(\mathrm{Hz})$	

- SC CMFB nets
- pMOS input scheme

Cancelled body effect (substrate noise coupling)
Smaller 1/f noise

	INTEG. 1	INTEG. 2	INTEG.3	INTEG. 4
Unit capacitor	0.66 pF	0.45 pF	0.45 pF	
DC gain	$3000(70 \mathrm{~dB})$	$600(56 \mathrm{~dB})$		
$G B(1.5 \mathrm{pF})$	265 MHz	210 MHz		
Slew rate $(1.5 \mathrm{pF})$	$800 \mathrm{~V} / \mu \mathrm{s}$	$350 \mathrm{~V} / \mu \mathrm{s}$		
Output swing	$\pm 1.80 \mathrm{~V}$	$\pm 1.60 \mathrm{~V}$		
Input equivalent noise	$6 \mathrm{nV} / \mathrm{sqrt}(\mathrm{Hz})$	$50 \mathrm{nV} / \mathrm{sqrt}(\mathrm{Hz})$		

- SC CMFB nets
- pMOS input scheme

Cancelled body effect (substrate noise coupling)
Smaller 1/f noise

OPA 2-stage amplifier Telescopic 1st stage 2-path compensation

	Typical	Worst Case
DC gain	78.6 dB	73.5 dB
$G B(1.5 \mathrm{pF})$	446.8 MHz	331.5 MHz
$P M(1.5 \mathrm{pF})$	$64.0 \circ$	$57.9 \circ$
$S R(1.5 \mathrm{pF})$	$1059 \mathrm{~V} / \mu \mathrm{s}$	$883 \mathrm{~V} / \mu \mathrm{s}$
Output swing	$\pm 2.09 \mathrm{~V}$	$\pm 1.86 \mathrm{~V}$
Input eq. noise	$5.1 \mathrm{nV} / \mathrm{sqrt}(\mathrm{Hz})$	$5.5 \mathrm{nV} / \mathrm{sqrt}(\mathrm{Hz})$
Input capacitance	126 fF	129 fF
Power consumption	17.2 mW	19.4 mW

	INTEG. 1	I NTEG. 2	I NTEG. 3	INTEG. 4
Unit capacitor	0.66 pF	0.45 pF	0.45 pF	
DC gain	$3000(70 \mathrm{~dB})$		$600(56 \mathrm{~dB})$	
$G B(1.5 \mathrm{pF})$	265 MHz	210 MHz		
Slew rate $(1.5 \mathrm{pF})$	$800 \mathrm{~V} / \mu \mathrm{s}$	$350 \mathrm{~V} / \mu \mathrm{s}$		
Output swing	$\pm 1.80 \mathrm{~V}$	$\pm 1.60 \mathrm{~V}$		
Input equivalent noise	$6 \mathrm{nV} / \mathrm{sqrt}(\mathrm{Hz})$	$50 \mathrm{nV} / \mathrm{sqrt}(\mathrm{Hz})$		

- SC CMFB nets
- pMOS input scheme

Cancelled body effect (substrate noise coupling)
Smaller 1/f noise

OPB folded-cascode amplifier

	Typical	Worst Case
DC gain	58.0 dB	56.8 dB
$G B(1.5 \mathrm{pF})$	393.5 MHz	331.7 MHz
$P M(1.5 \mathrm{pF})$	$70.3 \circ$	67.70
$S R(1.5 \mathrm{pF})$	$377 \mathrm{~V} / \mu \mathrm{s}$	$373 \mathrm{~V} / \mu \mathrm{s}$
Output swing	$\pm 1.97 \mathrm{~V}$	$\pm 1.72 \mathrm{~V}$
Input eq. noise	$4.1 \mathrm{nV} / \mathrm{sqrt}(\mathrm{Hz})$	$5.1 \mathrm{nV} / \mathrm{sqrt}(\mathrm{Hz})$
Input capacitance	300 fF	343 fF
Power consumption	6.6 mW	6.9 mW

DIERME Case stu0y

- Slow-down of the integrators dynamics
- I ncomplete sampling (RC time constant)
- Dynamic distortion (front-end integrator)
$\rightarrow R_{\text {on }} \sim 150 \Omega$
Standard CMOS switches

CMOS tech with mixed－signal facilities

Thin oxide between metal 4 and metal 5

Cap．matching	0.05%（1pF）
Bottom plate parasitic	1%
Cap．spread	$\pm 20 \%$

[^1]\rightarrow Helps to limit the capacitive load to integrators

I ntegrators weights：

■ Front－end integ，0．66pF：$\quad 27 \mu \mathrm{~m} \times 27 \mu \mathrm{~m}$
－Remaining integs， $0.45 \mathrm{pF}: 22 \mu \mathrm{~m} \times 22 \mu \mathrm{~m}$
Also MiM caps in OPA，in the SC CMFB nets，and in the anti－aliasing filter

DIF Fivis erse study accuand

Comparator
Pre-amp + Regenerative latch + SR latch
(Different supplies)

Hysteresis	$127.5 \mu \mathrm{~V}$	Offset	6.3 mV
Resolution time, LH	3.9 ns	Resolution time, HL	2.8 ns
Input capacitance	100 fF	Power consumption	0.3 mW

3-bit Quantizer

Resistive-ladder DAC

■ 700- Ω ladder between references $+2 \mathrm{~V} /+0.5 \mathrm{~V}$ (14×50 , 3.21mW)

- Unsalicided $n+$ poly used in resistors
- References obtained from the on-chip analog supply

Flash ADC

- Static input scheme (no caps)
- Reduces capacitive load to 4th integrator
- Saves silicon area
- Extra differential pair in comparators

$2.78 \mathrm{~mm}^{2}$ w/o pads

CMOS $0.25 \mu \mathrm{~m}$

- Dedicated analog, mixed, and digital supplies
- Guard rings with dedicated pad/pin
- Increased distance among analog and digital blocks
- Layout symmetry and common-centroid techniques
- Shielded bus for distributing the clock signals
- Extensive on-chip decoupling
- Pad ring divided blocking cells
- Multiple bonding techniques

Part of a commercial modem

In mass production (STMicroelectronics)

[Boser88]	B.E. Boser and B.A. Wooley, "The Design of Sigma-Delta Modulation Analog-to-Digital Converters". IEEE Journal of Solid-State Circuits, vol. 23. pp. 1298-1308, December 1988.
[Bran97]B. Brandt, P.F. Ferguson, and M. Rebeschini, "Analog Circuit Design of $\sum \triangle$ ADCs", Chapter 11 in Delta-Sigma Data Converters: Theory, Design and Simulation (S.R. Norsworthy, R. Schreier, and G.C. Temes, Editors). IEEE Press, 1997. CEnz96] C.C. Enz and G.C. Temes, "Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization". Proceedings of the IEEE, vol. 84, no. 11, pp. 1584-1614, November 1996. J.H. Fischer, "Noise Sources and Calculation Techniques for Switched Capacitor Filters". IEEE Journal of Solid-State Circuits, vol. 17, no. 4, pp. 742-752, August 1982.	
[Geer02]Y. Geerts, M. Steyaert, and W. Sansen, Design of Multi-Bit Delta-Sigma A/D Converters. Kluwer Academic Publishers, 2002.	
[Mede99]F. Medeiro, B. Pérez-Verdú, and A. Rodríguez-Vázquez, Top-Down Design of High-Performance Modulators. Kluwer Academic Publishers, 1999.	
[Rio00]R. del Río, F. Medeiro, B. Pérez-Verdú, and A. Rodríguez-Vázquez, "Reliable Analysis of Settling Errors in SC Integrators: Application to $\Sigma \Delta$ Modulators". IEE Electronics Letters, vol. 36, no. 6, pp. 503-504, March 2000. G. Yin and W. Sansen, "A High-Frequency and High-Resolution Fourth-Order $\Sigma \Delta$ A/D Converter in BiCMOS Technology". IEEE Journal of Solid-State Circuits, vol. 29, pp. 857-865, August 1994.	
More details on errors and case study ...	
R. del Río, F. Medeiro, B. Pérez-Verdú, J.M. de la Rosa, and A. Rodríguez-Vázquez, CMOS Cascade Sigma-	
Delta Modulators for Sensors and Telecom: Error Analysis and Practical Design. Springer, 2006.	

[^0]: 988 UNIVERSITAT POLITĖCNICA
 08 DE CATALUNYA
 UPC BARCELONATECH

[^1]: Very good matching（ 0.1% assumed for $6-\sigma$ design）

